• Title/Summary/Keyword: Single reactor

Search Result 398, Processing Time 0.02 seconds

Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition

  • Chen, Hongsheng;Long, Chongsheng;Xiao, Hongxing;Wei, Tianguo;Le, Guan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.344-351
    • /
    • 2020
  • AgInCd alloy is widely used as neutron absorber in nuclear reactors. However, the AgInCd control rods may fail during service due to the irradiation swelling. In the present study, a calculational method is proposed to calculate the composition change of the AgInCd absorber. Calculated results show that neutron fluence has significant impact on the chemical compositions. Ag and In contents gradually decrease while Cd and Sn conversely increases from the center to the rim of AgInCd absorber due to the depression of neutron flux. The composition change at the surface is higher almost two times than that at the center. Based on the calculated compositions, six simulated AgInCdSn alloys were prepared and examined. With the increase of Cd and Sn, the simulated AgInCdSn alloys transform from a single fcc phase into the mixed fcc and hcp phases, and finally into the single hcp phase. The atomic volume of the hcp phase is obviously larger than the fcc phase. The fcc-hcp transformation results in considerable volume swelling of the AgInCd absorber. Moreover, the lattice parameters of the fcc and hcp phases gradually increase with Cd and Sn contents, which also can induce small volume swelling.

Rotation Speed Dependence of ZnO Coating Layer on SnSe powders by Rotary Atomic Layer Deposition Reactor (회전형 원자층 증착기의 회전 속도에 따른 SnSe 분말 상 ZnO 박막 증착)

  • Jung, Myeong Jun;Yun, Ye Jun;Byun, Jongmin;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.239-245
    • /
    • 2021
  • The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100℃. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygen-rich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

Hydrodynamics and Liquid Flow Characteristics in an Internal Circulation Airlift Reactor using a Single Nozzle (단일노즐을 사용한 내부순환 공기리프트 반응기에서 수력학과 액체의 흐름특성)

  • Kim, Jong-Chul;Jang, Sea-Il;Son, Min-Il;Kim, Tae-Ok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.816-821
    • /
    • 1997
  • The hydrodynamics and the liquid flow characteristics were investigated in an internal circulation airlift reactor with a single nozzle as a gas distributor. In an air-water system, the gas holdup in the individual flow zone and the impulse-response curve of tracer were measured at various gas velocities and reactor heights. Experimental results showed that for the higher gas velocity(>about 8 cm/s), the flow behavior of bubbles in the riser was turbulent flow due to strong bubble coalescences and the axial height of dispersion zone of large bubbles having uniform sizes in the downcomer was decreased with increasing gas velocity. And mean gas holdups in the individual flow zone and the reactor were increased with increasing gas velocities and were decreased with increasing heights of the top section of the reactor and it was decreased with increasing the height of the top section and gas velocity. Flow characteristics of liquid in the riser and the downcomer was tend to access to plug flow and the overall flow behavior of liquid was mainly varied with the size of the top section which it was assumed to be perfect mixing zone. In these conditions, liquid circulation velocities were increased with increasing gas velocities and they were higher than those by using other gas distributors.

  • PDF

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Study on Optimal Welding Processes of Half Nozzle Repair on Small Bore Piping Welds in Reactor Coolant System (원자로냉각재계통 소구경 관통관 용접부 부분노즐교체 예방정비를 위한 최적 용접공정에 관한 연구)

  • Kim, Young Zoo;Jung, Kwang Woon;Choi, Kwang Min;Choi, Dong Chul;Cho, Sang Beum;Cho, Hong Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • The purpose of this study is to develop a Half Nozzle Repair(HNR) process to prevent the leakage from welds on small bore piping in Reactor Coolant System. The Codes & Standards of tempered bead and design requirements of J-Groove welds are reviewed. Automatic machine GTAW welding and machining equipments are developed to perform HNR process. Single pass welding and overlay welding equipments are conducted in order to obtain the optimal temper bead welding process parameters with Alloy 52M filler wire. Coarse grain heat affected zone(CGHAZ) is formed by rapid cooling rate in heat affected zone after welding. Accordingly, a proper temper bead technique is required to reduce CGHAZ in 1-Layer of welds by 2- and 3-Layers. Mock-up tests show that the developed HNR process is possible to meet ASME Code & Standard requirements without any defect.

The evaluation of T-P removal and dewaterability under the operation change in KIDEA process (-기술정보- 연속유입 KIDEA에서 공정변화에 따른 인제거 및 탈수 함수율 상관관계)

  • Yeon, seung jun;Her, hee seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.179-182
    • /
    • 2008
  • The KIDEA process, occurred in single reactor, is operated by three consequential steps, i.e., aerobic, settling, and discharge while introducing wastewater into the bottom of reactor continuously. It could accomplish biological oxidation (BOD), nitrification, denitrification (T-N), phosphate removal (T-P), and solid separation (SS) through the operational mode mentioned. Especially, this system has removed the T-P by wasting certain amount of sludge at the end of aeration phase during 5~10 minutes and not returned the activated sludge into the reactor, that is, no RAS (Return Activated Sludge). All running mode and instrumentation were controlled by the PLC equipment automatically. In this study, therefore, we have evaluated T-P removal efficiency and moisture content (MC) performance under the different excess sludge wasting mode. T-P track study and MC with TS concentration were analyzed during aerobic and settling phase. It has revealed that there was no significant difference of released T-P concentration between the first case which waste the sludge at the end of aerobic phase (0.2mg/L) and the second case which waste the sludge at 40 min of settling phase (0.25mg/L). Also, dewatering duration and MC have decreased 1.7% when TS concentration was increased from 0.31% to 0.5% during aerobic condition. Hence, it has concluded the system performance was less influenced by the operation time change of PLC program.

Reactor design of PECVD system using a liquid aerosol feed method (미립액상법을 위한 PECVD 반응로설계)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.235-243
    • /
    • 1997
  • The high-$T_c$ superconducting phase, $YBa_2Cu_3O_x$, was deposited on the single crystal MgO substrate, using a liquid aerosol feed method in a plasma enhanced chemical vapor deposition(PECVD) reactor. The effect of the plasma distribution depending on the design of a reactor was studied by the analysis of the microstructures of thin films. The particles landed were frequently observed on the films and the two causes that were responsible for the particle deposition were explained. The particles were deposited by the unstable and non-uniform plasma and the low evaporation rate of the precursors. Also, the thin film deposition rate decreased significantly as the distance between the evaporating location and the substrate increased.

  • PDF

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.