Browse > Article
http://dx.doi.org/10.7842/kigas.2017.21.4.92

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study  

Kshetrimatum, Krishnadash S. (Dept. of Chemical and Biological Engineering, Seoul National University)
Na, Jonggeol (Dept. of Chemical and Biological Engineering, Seoul National University)
Park, Seongho (Dept. of Chemical and Biological Engineering, Seoul National University)
Jung, Ikhwan (Dept. of Chemical and Biological Engineering, Seoul National University)
Lee, Yongkyu (Dept. of Chemical and Biological Engineering, Seoul National University)
Han, Chonghun (Dept. of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of the Korean Institute of Gas / v.21, no.4, 2017 , pp. 92-102 More about this Journal
Abstract
Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.
Keywords
low-temperatrue fischer-tropsch synthesis; microchannel reactor; process intensification; computational fluid dynamics; wall boiling coolant; heat transfer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lipski, R.,Smaller-scale GTL enters the mainstream. Gas Processing, Velocys Inc., (2012)
2 Franz, F. and Hans,T., "Process for the production of paraffin-hydrocarbons with more than one carbon atom", U.S. Patent 1746464, February 11,(1930).
3 Almeida, L.C., Sanz, O., D'olhaberriague, J, Yunes, S., and Montes, M.,"Microchannel reactor for Fischer-Tropsch synthesis: Adaptation of a commercial unit for testing microchannel blocks", Fuel, 110, 171-177, (2013).   DOI
4 Cao, C., Hu, J., Li, S., Wilcox, W., and Wang, Y, "Intensified Fischer-Tropsch synthesis process with microchannel catalytic reactors", Catalysis Today, 140(3), 149-15, (2009).   DOI
5 Deshmukh, S.R., Tonkovich, A.L.Y., Jarosch, K.T., Schrander, L., Fitzgerald, S.P., Kilanowski, D.R., Lerou, J.J., Mazanec, T.J., "Scale-up of microchannel reactors for Fischer- Tropsch synthesis", Industrial & Engineering Chemistry Research, 49(21), 10883-10888, (2010)   DOI
6 Holmen, A., Venvik, H.J., Myrstad,R., Zhu,J., and Chen, D., "Monolithic, microchannel and carbon nanofibers/carbon felt reactors for syngas conversion by Fischer-Tropsch synthesis", Catalysis Today, 216, 150-157, (2013).   DOI
7 Myrstad, R., Eri, S., Pfeifer, P., Rytter, E., and Holmen, A.,"Fischer-Tropsch synthesis in a microstructured reactor", Catalysis Today, 147, S301-S304, (2009).   DOI
8 Kshetrimayum, K.S., Jung, I., Na., J., Park, S., Lee, Y., Park, S., Lee, C.-J., and Han, C., "CFD Simulation of Microchannel Reactor Block for Fischer-Tropsch Synthesis: Effect of Coolant Type and Wall Boiling Condition on Reactor Temperature", Industrial & Engineering Chemistry Research, 55(3), 543-554, (2016).   DOI
9 Park, S., Jung, I., Lee, U., Na., J., Kshetrimayum, K.S., Lee, Y., Lee, C.-J., and Han, C., "Design and modeling of large-scale crosscurrent multichannel Fischer-Tropsch reactor using channel decomposition and cell-coupling method", Chemical Engineering Science, 134, 448-456, (2015).   DOI
10 Harris, R.A., "Commercializing and deploying microchannel FT reactors for smaller scale GTL facilities", AIChE Process Development Symposium Houston ,USA, (2015).
11 Arzamendi, G., Dieguez, P., Montes, M., Odriozola, J., Sousa-Aguiar, E.F., and Gandia, L, "Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer-Tropsch synthesis", Chemical Engineering Journal, 160(3), 915-922, (2010).   DOI
12 Kshetrimayum, K.S., Park, S., Jung, I., Na, J., and Han, C.,"Simulation Study of Heat Transfer Enhancement due to Wall Boiling Condition in a Microchannel Reactor Block for Fischer-Tropsch Synthesis", Computer Aided Chemical Engineering, 1355-1360, (2015).
13 Jarosch, K.T., Tonkovich, A.L., Perry, S.T., Kuhlmann, D., and Wang, Y., "Microchannel reactors for intensifying gas-to-liquid technology", ACS Symposium Series, Washington DC, (2005).
14 Na, J., Jung, I., Kshetrimayum, K.S., Park, S., Park, C., Han, C.,"Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor", Korean Chemical Engineering Research, 52(6), 826-833, (2014).   DOI
15 Lee, Y., Jung, I., Na, J., Park, S., , Kshetrimayum, K.S., and Han, C., "Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics", Korean Chemical Engineering Research, 53(6), 818-823, (2015).   DOI
16 Jung, I., Kshetrimayum, K.S., Park, S., Na., J., Lee, Y., An, J., Park, S., Lee, C.-J., and Han, C., "Computational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer-Tropsch Reactor" Industrial & Engineering Chemistry Research, 55(2), 505-515, (2016).   DOI
17 Na, J., Kshetrimayum, K.S., Lee, U., and Han, C., "Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm", Chemical Engineering Journal, 313, 1521-1534, (2017).   DOI
18 Park, S., Jung, I., Lee, Y., Kshetrimayum, K.S., Na., J., Park, S.,Lee, Shin, S., Ha, D., Lee, Y., Chung, J., Lee, C.-J., and Han, C.,, "Design of microchannel Fischer-Tropsch reactor using cell-coupling method: Effect of flow configurations and distribution", Chemical Engineering Science, 143, 63-75, (2016).   DOI
19 Tonkovich, A.L., Yuschak, T., Neagle, P.W., Marco, J.L., Marco, J.D., Marchiando, M.A., Keyes, L.W., Deshmukh, S., and Luzenski, R.J.,"Laminated, Leak-Resistant Chemical Processors; Methods of Making, and Methods of Operating", US Patent 0132290 A1, (2011).
20 Jung, I., Na, J., Park, S., Jeon, J., Mo, Y., Yi, J., Chung, J., and Han, C., "Optimal design of a large scale Fischer-Tropsch microchannel reactor module using a cell-coupling method", Fuel Processing Technology, 159, 448-459, (2017).   DOI
21 Visconti, C.G., Tronconi, E., Lietti, L., Forzatti, P, Rossini, S., and Zennaro, R.,"Detailed kinetics of the Fischer-Tropsch synthesis on cobalt catalysts based on H-assisted CO activation", Topics in Catalysis, 54(13-15), 786-800, (2011).   DOI
22 Eliason, S. and C. Bartholomew, "Reaction and deactivation kinetics for Fischer-Tropsch synthesis on unpromoted and potassium-promoted iron catalysts", Applied Catalysis A: General, 186(1), 229-243, (1999).   DOI
23 Iglesia, E., Reyes, S.C., Madon, R.J., and Soled, S.L., "Selectivity Control and Catalyst Design in the Fischer-Tropsch", Advances in Catalysis, 39, 221, (1993).
24 Yates, I.C. and Satterfield, C.N. "Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst", Energy & Fuels, 5(1), 168-173, (1991).   DOI
25 Marvast, M.A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G.,"Fischer-Tropsch Synthesis: Modeling and Performance Study for Fe HZSM5 Bifunctional Catalyst", Chemical engineering & technology, 28(1), 78-86, (2005).   DOI
26 Shin, M.-S., Park, N., Park, M.-J., Jun, K.-W., and Ha, K.-S., "Modeling a channel-type reactor with a plate heat exchanger for cobalt- based Fischer-Tropsch synthesis" Fuel Processing Technology, 118, 235-243, (2014).   DOI
27 Perry Robert, H., W. Green Don, and O. Maloney James, Perry's chemical engineers' handbook. Mc Graw-Hills New York, 7th ed., 56-64, (1997).
28 Shin, M.-S., Park, N., Park, Cheon, J.-Y., Kang, J.K., Jun, K.-W., and Ha, K.-S.,, "Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis: Maximum utilization of catalytic bed by microchannel heat exchangers", Chemical Engineering Journal, 234, 23-32, (2013)   DOI
29 Kurul, N. and M. Podowski. "On the modeling of multidimensional effects in boiling channels" ANS Proceeding of the 27th National Heat Transfer Conference, (1991).
30 Krepper, E. and R. Rzehak, "CFD for subcooled flow boiling: Simulation of DEBORA experiments", Nuclear Engineering and Design, 2011. 241(9): p. 3851-3866.   DOI
31 Song, H.-S., Ramakrishna, D., Trinh, S., and Wright, H., "Operating strategies for Fischer- Tropsch reactors: A model-directed study", Korean Journal of Chemical Engineering, 21(2), 308-317, (2004).   DOI
32 Zhu, X., Lu, X., Liu, X., Hildebrandt, D., and Glasser, D., "Heat transfer study with and without Fishcer-Tropsch reaction in a fixed bed reactror with TiO2, SiO2, and SiC supported cobalt catalyst", Chemical Engineering Science, 247, 75-84, (2014)   DOI