DOI QR코드

DOI QR Code

Rotation Speed Dependence of ZnO Coating Layer on SnSe powders by Rotary Atomic Layer Deposition Reactor

회전형 원자층 증착기의 회전 속도에 따른 SnSe 분말 상 ZnO 박막 증착

  • Jung, Myeong Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yun, Ye Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 정명준 (서울과학기술대학교 신소재공학과) ;
  • 윤예준 (서울과학기술대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2021.06.14
  • Accepted : 2021.06.25
  • Published : 2021.06.28

Abstract

The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100℃. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygen-rich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.

Keywords

Acknowledgement

이 연구는 SeoulTech 미래핵심선도 프로젝트 지원사업으로 수행되었습니다.

References

  1. X. L. Shi, J. Zou and Z. G. Chen: Chem.Rev., 120 (2020) 7399. https://doi.org/10.1021/acs.chemrev.0c00026
  2. N. Ma, Y. Y. Li, L. Chen and L. M. Wu: J. Am. Chem. Soc., 142 (2020) 5293. https://doi.org/10.1021/jacs.0c00062
  3. Y. Zhang, S. Li, F. Liu, C. Zhang, L. Hu, W. Ao, Y. Li, J. Li, H. Xie, Y. Xiao and F. Pan: J. Mater. Chem. A, 7 (2019) 26053. https://doi.org/10.1039/C9TA09550K
  4. Y. Jin, J. Hwang, M. K. Han, W. Shon, J. S. Rhyee and S. J. Kim: ACS Appl. Mater. Interfaces, 12 (2020) 36589. https://doi.org/10.1021/acsami.0c08149
  5. M. J. Lee, J. H. Ahn, J. H. Sung, H. Heo, S. G. Jeon, W. Lee, J. Y. Song, K. H. Hong, B. Choi, S. H. Lee and M. H. Jo: Nat. Commun., 7 (2016) 12011. https://doi.org/10.1038/ncomms12011
  6. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis: Nature, 508 (2014) 373. https://doi.org/10.1038/nature13184
  7. Z. G. Chen, X. Shi, L. D. Zhao and J. Zou: Prog. Mater Sci., 97 (2018) 283. https://doi.org/10.1016/j.pmatsci.2018.04.005
  8. S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257. https://doi.org/10.1016/j.nanoen.2018.04.047
  9. K. C. Kim, S. S. Lim, S. H. Lee, J. Hong, D. Y. Cho, A. Y. Mohamed, C. M. Koo, S. H. Baek, J. S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146. https://doi.org/10.1021/acsnano.9b02574
  10. S. M. George: Chem. Rev., 110 (2010) 111. https://doi.org/10.1021/cr900056b
  11. D. M. King, J. A. Spencer II, X. Liang, L. F. Hakim, A. W. Weimer: Surf. Coat. Technol., 201 (2007) 9163. https://doi.org/10.1016/j.surfcoat.2007.05.002
  12. J. A. McCormick, B. L. Cloutier and A. W. Weimer: J. Vac. Sci. Technol., A, 25 (2007) 67. https://doi.org/10.1116/1.2393299
  13. J. Byun, H. An, J. Hong, D. W. Chun and J. Moon: Appl. Surf. Sci., 544 (2021) 148834. https://doi.org/10.1016/j.apsusc.2020.148834
  14. K. P. Ong, D. J. Singh and P. Wu: Phys. Rev. B, 83 (2011) 115110. https://doi.org/10.1103/PhysRevB.83.115110
  15. S. K. Kim, C. S. Hwang, S. H. K. Park and S. J. Yun: Thin Solid Films, 478 (2005) 103. https://doi.org/10.1016/j.tsf.2004.10.015
  16. Y. Wang, K.-M. Kang, M. Kim and H.-H. Park: Thin Solid Films, 660 (2018) 852. https://doi.org/10.1016/j.tsf.2018.03.003
  17. D. M. King, X. Liang, P. Li and A. W. Weimer: Thin Solid Films, 516 (2008) 8517. https://doi.org/10.1016/j.tsf.2008.05.026