Browse > Article
http://dx.doi.org/10.1016/j.net.2019.07.021

Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition  

Chen, Hongsheng (Shenzhen Clean Energy Research Institute)
Long, Chongsheng (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
Xiao, Hongxing (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
Wei, Tianguo (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
Le, Guan (Shenzhen Clean Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.52, no.2, 2020 , pp. 344-351 More about this Journal
Abstract
AgInCd alloy is widely used as neutron absorber in nuclear reactors. However, the AgInCd control rods may fail during service due to the irradiation swelling. In the present study, a calculational method is proposed to calculate the composition change of the AgInCd absorber. Calculated results show that neutron fluence has significant impact on the chemical compositions. Ag and In contents gradually decrease while Cd and Sn conversely increases from the center to the rim of AgInCd absorber due to the depression of neutron flux. The composition change at the surface is higher almost two times than that at the center. Based on the calculated compositions, six simulated AgInCdSn alloys were prepared and examined. With the increase of Cd and Sn, the simulated AgInCdSn alloys transform from a single fcc phase into the mixed fcc and hcp phases, and finally into the single hcp phase. The atomic volume of the hcp phase is obviously larger than the fcc phase. The fcc-hcp transformation results in considerable volume swelling of the AgInCd absorber. Moreover, the lattice parameters of the fcc and hcp phases gradually increase with Cd and Sn contents, which also can induce small volume swelling.
Keywords
AgInCd absorber; Chemical composition; Microstructure; Phase; Swelling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 I. Cohen, Development and Properties of Silver-Base Alloys as Control Rod Materials for Pressurized Water Reactors, Bettis Atomic Power Laboratory Report, 1959. WAPD-214.
2 D.A. Petti, Nucl. Technol. 84 (1989) 128-151.
3 L. Sepold, T. Lind, A. Pinter Csordas, U. Stegmaier, M. Steinbruck, J. Stuckert, Ann. Nucl. Energy 36 (2009) 1349-1359.   DOI
4 R. Dubourg, H. Austregesilo, C. Bals, M. Barrachin, J. Birchley, T. Haste, J.S. Lamy, T. Lind, B. Maliverney, C. Marchetto, A. Pinter, M. Steinbrück, J. Stuckert, K. Trambauer, A. Vimi, Prog. Nucl. Energy 52 (2010) 97-108.   DOI
5 M. Steinbruck, U. Stegmaier, M. Grosse, Ann. Nucl. Energy 101 (2017) 347-358.   DOI
6 J. Kalilainen, T. Lind, J. Stuckert, T. Bergfeldt, O. Sippula, J. Jokiniemi, J. Nucl. Mater. 517 (2019) 315-327.
7 P.J. Sipush, J. Woodcock, R.W. Chickering, Lifetime of PWR Silver-Indium-Cadmium Control Rods, Electric Power Research Institute Report, 1986. NP-4512.
8 H. Chen, H. Wang, Q. Sun, C. Long, T. Wei, H. Xiao, Y. Zhao, J. Alloy. Comp. 770 (2019) 608-615.
9 T. Matsuoka, T. Yonezawa, K. Nakamura, K. Murakami, J. Shimizu, T. Nagata, J. Nucl. Sci. Technol. 35 (1998) 564-578.
10 T. Matsuoka, Y. Yamaguchi, T. Yonezawa, K. Murakami, S. Shiraishi, T. Nagata, J. Nucl. Sci. Technol. 36 (1999) 584-595.   DOI
11 H. Chen, C. Long, H. Xiao, L. Chen, T. Wei, Mater. Des. 65 (2015) 468-472.   DOI
12 J. Bourgoin, C. Lebue, A. Cazus, X. Thibault, M. Monchanin, P.J. Sartor, F. Couvreur, D. Gosset, in: Proceedings of the International Symposium on Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurised Water ReactorseFontevraud III, France, September 1994.
13 S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron resonance Parameters And Thermal Cross Sections, Part A Ζ=1-60, Volume 1 Of Neutron Cross Sections, Academic Press, New York, 1981.
14 W. Wan, H. Chen, H. Wang, C. Long, Q. Sun, Y. Li, G. Li, J. Luo, Mater. Char. 138 (2018) 165-173.   DOI
15 J. Bourgoin, F. Couvreur, D. Gosset, F. Defoort, M. Monchanin, X. Thibaul, J. Nucl. Mater. 275 (1999) 296-304.   DOI
16 I.C. Gauld, G. Radulescu, G. Ilas, B.D. Murphy, M.L. Williams, D. Wiarda, Nucl. Technol. 174 (2011) 169-195.
17 S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The lund/LBNL nuclear data search. http://nucleardata.nuclear.lu.se/toi/index.asp.
18 C.S. Long, H.X. Xiao, W. Gao, H.S. Chen, Atomic Energy Sci. Technol. 49 (2015) 1844-1848.
19 C.F. Reinke, Examination of Irradiated Ag-In-Cd Alloys, Argonne National Laboratory Report, 1965. ANL-6883.
20 M. Angelopoulos, R.E. Strickland, J. Nucl. Energy - Part A React. Sci. 12 (1960) 21-25.   DOI
21 W. Wan, H. Chen, C. Long, Q. Sun, G. Li, H. Wang, Q. Tang, Mater. Char. 134 (2017) 279-284.   DOI
22 J. Adam, C. Bhatia, K. Katovsky, V. Kumar, M. Majerle, V.S. Pronskikh, W. Westmeier, Eur. Phys. J. A 47 (2011) 85.
23 C.S. Long, H.X. Xiao, W. Gao, H.S. Chen, Atomic Energy Sci. Technol. 49 (2015) 1984-1988.
24 R.S. Nelson, J.A. Hudson, D.J. Mazey, J. Nucl. Mater. 44 (1972) 318-330.   DOI
25 C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, Nucl. Eng. Technol. 47 (2015) 323-331.   DOI
26 G.S. Cole, Metall. Trans. 2 (1971) 357-370.   DOI
27 S. Venkat Reddy, S.V. Suryanarayana, Bull. Mater. Sci. 8 (1986) 61-69.   DOI
28 R.G. Krishnan, R.K. Gupta, P.R. Rao, Metall. Trans. 2 (1971) 3373-3375.
29 S. Venkat Reddy, S.V. Suryanarayana, J. Appl. Phys. 54 (1983) 6317.   DOI
30 R.P.I. Adler, C.N.J. Wagner, J. Appl. Phys. 33 (1962) 3451-3458.   DOI
31 A. Strasser, W. Yario, Control Rod Materials and Burnable Poisons. An Evaluation of the State of the Art and Needs for Technology Development, EPRI Technical Report, 1980. NP-1974.
32 F. Khoshahval, A.A. Ahdavi, Ann. Nucl. Energy 87 (2016) 58-68.   DOI
33 M. Yari, A. Lashkari, S.F. Masoudi, M. Hosseinipanah, Nucl. Eng. Technol. 50 (2018) 1266-1276.   DOI
34 W.K. Anderson, J.S. Theilacker, Neutron Absorber Materials for Reactor Control, U.S. Atomic Energy Commission, Washington, 1962.