Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.3.239

Rotation Speed Dependence of ZnO Coating Layer on SnSe powders by Rotary Atomic Layer Deposition Reactor  

Jung, Myeong Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Yun, Ye Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Byun, Jongmin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.28, no.3, 2021 , pp. 239-245 More about this Journal
Abstract
The SnSe single crystal shows an outstanding figure of merit (ZT) of 2.6 at 973 K; thus, it is considered to be a promising thermoelectric material. However, the mass production of SnSe single crystals is difficult, and their mechanical properties are poor. Alternatively, we can use polycrystalline SnSe powder, which has better mechanical properties. In this study, surface modification by atomic layer deposition (ALD) is chosen to increase the ZT value of SnSe polycrystalline powder. SnSe powder is ground by a ball mill. An ALD coating process using a rotary-type reactor is adopted. ZnO thin films are grown by 100 ALD cycles using diethylzinc and H2O as precursors at 100℃. ALD is performed at rotation speeds of 30, 40, 50, and 60 rpm to examine the effects of rotation speed on the thin film characteristics. The physical and chemical properties of ALD-coated SnSe powders are characterized by scanning and tunneling electron microscopy combined with energy-dispersive spectroscopy. The results reveal that a smooth oxygen-rich ZnO layer is grown on SnSe at a rotation speed of 30 rpm. This result can be applied for the uniform coating of a ZnO layer on various powder materials.
Keywords
Thermoelectric materials; Atomic layer deposition; Rotary reactor; SnSe powder; ZnO layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Ma, Y. Y. Li, L. Chen and L. M. Wu: J. Am. Chem. Soc., 142 (2020) 5293.   DOI
2 M. J. Lee, J. H. Ahn, J. H. Sung, H. Heo, S. G. Jeon, W. Lee, J. Y. Song, K. H. Hong, B. Choi, S. H. Lee and M. H. Jo: Nat. Commun., 7 (2016) 12011.   DOI
3 S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257.   DOI
4 K. C. Kim, S. S. Lim, S. H. Lee, J. Hong, D. Y. Cho, A. Y. Mohamed, C. M. Koo, S. H. Baek, J. S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146.   DOI
5 D. M. King, J. A. Spencer II, X. Liang, L. F. Hakim, A. W. Weimer: Surf. Coat. Technol., 201 (2007) 9163.   DOI
6 J. A. McCormick, B. L. Cloutier and A. W. Weimer: J. Vac. Sci. Technol., A, 25 (2007) 67.   DOI
7 K. P. Ong, D. J. Singh and P. Wu: Phys. Rev. B, 83 (2011) 115110.   DOI
8 S. K. Kim, C. S. Hwang, S. H. K. Park and S. J. Yun: Thin Solid Films, 478 (2005) 103.   DOI
9 D. M. King, X. Liang, P. Li and A. W. Weimer: Thin Solid Films, 516 (2008) 8517.   DOI
10 Y. Zhang, S. Li, F. Liu, C. Zhang, L. Hu, W. Ao, Y. Li, J. Li, H. Xie, Y. Xiao and F. Pan: J. Mater. Chem. A, 7 (2019) 26053.   DOI
11 L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis: Nature, 508 (2014) 373.   DOI
12 S. M. George: Chem. Rev., 110 (2010) 111.   DOI
13 X. L. Shi, J. Zou and Z. G. Chen: Chem.Rev., 120 (2020) 7399.   DOI
14 Y. Jin, J. Hwang, M. K. Han, W. Shon, J. S. Rhyee and S. J. Kim: ACS Appl. Mater. Interfaces, 12 (2020) 36589.   DOI
15 Z. G. Chen, X. Shi, L. D. Zhao and J. Zou: Prog. Mater Sci., 97 (2018) 283.   DOI
16 J. Byun, H. An, J. Hong, D. W. Chun and J. Moon: Appl. Surf. Sci., 544 (2021) 148834.   DOI
17 Y. Wang, K.-M. Kang, M. Kim and H.-H. Park: Thin Solid Films, 660 (2018) 852.   DOI