• Title/Summary/Keyword: Single loop

Search Result 763, Processing Time 0.035 seconds

Design of Antenna Tracking Software for MSC(Multi-Spectral Camera) Antenna Control

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper shows the desist concept of an ATS(Antenna Tracking Software) to control the movement of the MSC(Multi-Spectral Camera) antenna. The MSC has a two-axes directional X-band antenna for image transmission to KGS(KOMSAT2 Ground Station). The main objective of the ATS is to drive the APM(Antenna Pointing Mechanism) to the required elevation and the azimuth position according to an appropriate TPF(Tracking Parameter File). The ATS is implemented as one task of the SBC(Single Board Computer) software, which uses VxWorks as a real time OS. The ATS has several operational modes such as STANDBY mode, First EL mode, First AZ mode, Normal Operation mode, and so on. The ATS uses two PI controllers fur the velocity and the position loop respectively, to satisfy the requirements specification. In order to show the feasibility of the described design concept, the various simulations and the experiments are performed under specific test configuration.

  • PDF

Manufacturing and characterization of tufted preform with complex shape

  • Gnaba, Imen;Wang, Peng;Legrand, Xavier;Soulat, Damien
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.105-116
    • /
    • 2019
  • An alternative to the multilayered preforming is to use structures reinforced through-the-thickness in order to manufacture thicker and more complex pieces. Stitching technology is developed to bind dry reinforcements together or to strengthen composites in thickness performance by inserting structural yarns. Tufting process represents the simplest one-sided sewing technology and it is specifically designed for dry preform/liquid composite molding process route. Currently, the tufting technology is getting more and more interest due to its simplest and efficient process where it involves the insertion of binder threads via a single needle through the fabric. This technique of reinforcement through-the-thickness requires only one access to the preform which makes it suitable for three-dimensional structures and complex shaped textile composites. This paper aims to improve the understanding of the mechanical performance of tufted structures. An experimental study was developed, which included tensile and bending behaviours of tufted and un-tufted preforms, in order to evaluate the effect of tufting on the mechanical performance of dry preforms. The influence of the process parameters (tufting density, loop length, tufting yarns${\ldots}$) on the mechanical performance ofthe final structure is also highlighted.

Power Generator Modeling and Simulation for LNGC (LNGC용 Power Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.297-299
    • /
    • 2016
  • In this paper, Power Generator modeling for LNG ship has been performed and monitoring system has been developed in MATLAB/SIMULINK. The principal component of Power Generator are engine part(Diesel Engine, Turbine Engine) which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Also, load sharing between paralleled generators has been performed to share a total load that exceeds the capacity of a single generator and designated ship lumped load simulations have been carried out. A validity of these systems has been verified by comparison between simulation results and estimated result from the designated lumped load.

  • PDF

Traffic Engineering with Segment Routing under Uncertain Failures

  • Zheng, Zengwei;Zhao, Chenwei;Zhang, Jianwei;Cai, Jianping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2589-2609
    • /
    • 2021
  • Segment routing (SR) is a highly implementable approach for traffic engineering (TE) with high flexibility, high scalability, and high stability, which can be established upon existing network infrastructure. Thus, when a network failure occurs, it can leverage the existing rerouting methods, such as rerouting based on Interior Gateway Protocol (IGP) and fast rerouting with loop-free alternates. To better exploit these features, we propose a high-performance and easy-to-deploy method SRUF (Segment Routing under Uncertain Failures). The method is inspired by the Value-at-Risk (VaR) theory in finance. Just as each investment risk is considered in financial investment, SRUF also considers each traffic distribution scheme's risk when forwarding traffic to achieve optimal traffic distribution. Specifically, SRUF takes into account that every link may fail and therefore has inherent robustness and high availability. Also, SRUF considers that a single link failure is a low-probability event; hence it can achieve high performance. We perform experiments on real topologies to validate the flexibility, high-availability, and load balancing of SRUF. The results show that when given an availability requirement, SRUF has greater load balancing performance under uncertain failures and that when given a demand requirement, SRUF can achieve higher availability.

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Design of a Wide-Frequency-Range, Low-Power Transceiver with Automatic Impedance-Matching Calibration for TV-White-Space Application

  • Lee, DongSoo;Lee, Juri;Park, Hyung-Gu;Choi, JinWook;Park, SangHyeon;Kim, InSeong;Pu, YoungGun;Kim, JaeYoung;Hwang, Keum Cheol;Yang, Youngoo;Seo, Munkyo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.126-142
    • /
    • 2016
  • This paper presents a wide-frequency-range, low-power transceiver with an automatic impedance-matching calibration for TV-white-space (TVWS) application. The wide-range automatic impedance matching calibration (AIMC) is proposed for the Drive Amplifier (DA) and LNA. The optimal $S_{22}$ and $S_{11}$ matching capacitances are selected in the DA and LNA, respectively. Also, the Single Pole Double Throw (SPDT) switch is integrated to share the antenna and matching network between the transmitter and receiver, thereby minimizing the systemic cost. An N-path filter is proposed to reject the large interferers in the TVWS frequency band. The current-driven mixer with a 25% duty LO generator is designed to achieve the high-gain and low-noise figures; also, the frequency synthesizer is designed to generate the wide-range LO signals, and it is used to implement the FSK modulation with a programmable loop bandwidth for multi-rate communication. The TVWS transceiver is implemented in $0.13{\mu}m$, 1-poly, 6-metal CMOS technology. The die area of the transceiver is $4mm{\times}3mm$. The power consumption levels of the transmitter and receiver are 64.35 mW and 39.8 mW, respectively, when the output-power level of the transmitter is +10 dBm at a supply voltage of 3.3 V. The phase noise of the PLL output at Band 2 is -128.3 dBc/Hz with a 1 MHz offset.

DYNAMICAL CHARACTERISTICS OF THE QUIET TRANSITION REGION: SPATIAL CORRELATION STUDIES OF H I 931 AND S VI 933 UV LINES

  • YUN HONG SIK;CHAE JONG CHUL;POLAND A. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 1998
  • To understand the basic physics underlying large spatial fluctuations of intensity and Doppler shift, we have investigated the dynamical charctersitics of the transition region of the quiet sun by analyzing a raster scan of high resolution UV spectral band containing H Lyman lines and a S VI line. The spectra were taken from a quiet area of $100'\times100'$ located near the disk center by SUMER on board SOHO. The spectral band ranges from 906 A to 950 A with spatial and spectral resolution of 1v and $0.044 {\AA}$, respectively. The parameters of individual spectral lines were determined from a single Gaussian fit to each spectral line. Then, spatial correlation analyses have been made among the line parameters. Important findings emerged from the present analysis are as follows. (1) The integrated intensity maps of the observed area of H I 931 line $(1\times10^4 K)$ and S VI 933 line $(2\times10^5 K)$ look very smilar to each other with the same characterstic size of 5". An important difference, however, is that the intensity ratio of brighter network regions to darker cell regions is much larger in S VI 933 line than that in H I 931 line. (2) Dynamical features represented by Doppler shifts and line widths are smaller than those features seen in intensity maps. The features are found to be changing rapidly with time within a time scale shorter than the integration time, 110 seconds, while the intensity structure remains nearly unchanged during the same time interval. (3) The line intensity of S VI is quite strongly correlated with that of H I lines, but the Doppler shift correlation between the two lines is not as strong as the intensity correlation. The correlation length of the intensity structure is found to be about 5.7' (4100 km), which is at least 3 times larger than that of the velocity structure. These findings support the notion that the basic unit of the transition region of the quiet sun is a loop-like structure with a size of a few $10^3 km$, within which a number of unresolved smaller velocity structures are present.

  • PDF

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.