DOI QR코드

DOI QR Code

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Seung Chang Yoo (Korea Institute of Nuclear Safety) ;
  • Joo Hyung Seo (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ji Hyun Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • In Cheol Bang (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.08.06
  • Accepted : 2023.12.21
  • Published : 2024.03.25

Abstract

This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Keywords

Acknowledgement

This work was supported by Korea Hydro & Nuclear Power company through the project "Nuclear Innovation Center for Haeoleum Alliance" and partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2021M2D2A1A03048950).

References

  1. J.M. Chen, Carbon neutrality: toward a sustainable future, Innovation 2 (2021). 
  2. International Atomic Energy Agency, Nuclear Energy for Net Zero World, 2021. Vienna, Austria, https://es.catapult.org.uk/reports/nuclear-for-net-zero/. 
  3. S. Bouckaert, A.F. Pales, C. McGlade, U. Remme, B. Wanner, L. Varro, D. D'Ambrosio, T. Spencer, Net Zero by 2050: A Roadmap for the Global Energy Sector, 2021. Paris, France. 
  4. OECD, Technical and Economic Aspects of Load Following with Nuclear Power Plants, OECD Publishing, 2021. 
  5. R. Loisel, V. Alexeeva, A. Zucker, D. Shropshire, Load-following with nuclear power: market effects and welfare implications, Prog. Nucl. Energy 109 (2018) 280-292. 
  6. B. Gjorgiev, M. Cepin, Nuclear power plant load following: problem definition and application, in: Proc. 20th Int. Conf. Nucl. Energy New Eur. Bovec, Slov., 2011, pp. 12-15. 
  7. A. Ho, K. Mohammadi, M. Memmott, J. Hedengren, K.M. Powell, Dynamic simulation of a novel nuclear hybrid energy system with large-scale hydrogen storage in an underground salt cavern, Int. J. Hydrogen Energy 46 (2021) 31143-31157. 
  8. D.T. Ingersoll, C. Colbert, Z. Houghton, R. Snuggerud, J.W. Gaston, M. Empey, Can nuclear power and renewables be friends?, in: Proc. ICAPP, 2015. 
  9. D. Michaelson, J. Jiang, Review of integration of small modular reactors in renewable energy microgrids, Renew. Sustain. Energy Rev. 152 (2021), 111638. 
  10. O.L.A. Esteves, H.A. Gabbar, Nuclear-renewable hybrid energy system with load following for Fast charging stations, Energies 16 (2023) 4151. 
  11. D. Ingersoll, Z. Houghton, R. Bromm, C. Desportes, M. McKellar, R. Boardman, Extending nuclear energy to non-electrical applications, in: 19th Pacific Basin Nucl. Conf. (PBNC 2014), 2014, p. 3. 
  12. D.T. Ingersoll, Z.J. Houghton, R. Bromm, C. Desportes, NuScale small modular reactor for Co-generation of electricity and water, Desalination 340 (2014) 84-93. 
  13. J.N. Reyes Jr., Innovative Water-Cooled Reactor Concepts-SMR, 2009. 
  14. J.N. Reyes Jr., NuScale plant safety in response to extreme events, Nucl. Technol. 178 (2012) 153-163. 
  15. AP300TM SMR, Westinghouse. (n.d.). https://www.westinghousenuclear.com/energy-systems/ap300-smr (accessed August 5, 2023).. 
  16. Holtec's Small Modular Reactor, Holtec int, n.d. https://holtecinternational.com/products-and-services/smr/. (Accessed 5 August 2023). 
  17. H. Subki, Advances in Small Modular Reactor Technology Developments, 2020. 
  18. The NUWARDTM SMR solution, EDF. (n.d.). https://www.edf.fr/en/the-edf-group/producing-a-climate-friendly-energy/nuclear-energy/shaping-the-future-of-nuclear/the-nuwardtm-smr-solution/the-solution (accessed August 5, 2023).. 
  19. Small Modular Reactors, Rolls-Royce. (n.d.). https://www.rolls-royce.com/innovation/small-modular-reactors.aspx#/(accessed August 5, 2023). 
  20. C.D. Bell, Approach to UK SMR component design, in: Int. Conf. Nucl. Eng., American Society of Mechanical Engineers, 2018. V001T13A003. 
  21. C.P. Marcel, D.F. Delmastro, M. Schlamp, O. Calzetta, CAREM-25: A Safe Innovative Small Nuclear Power Plant, 2017. 
  22. S. Choi, Small modular reactors (SMRs): the case of the Republic of Korea, in: Handb. Small Modul. Nucl. React., Elsevier, 2021, pp. 425-465. 
  23. K.K. Kim, W. Lee, S. Choi, H.R. Kim, J. Ha, SMART: the first licensed advanced integral reactor, J. Energy Power Eng. 8 (2014) 94. 
  24. H.C. Kim, Y.-J. Chung, K.H. Bae, S.Q. Zee, Safety analysis of SMART, in: Proc. Int. Conf. Glob. Environ. Adv. Nucl. Power Plants GENES4/ANP2003, 2003. Kyoto, Japan. 
  25. H.-S. Park, K.-Y. Choi, S. Cho, S.-J. Yi, Experimental investigations on the heat transfer characteristics in a natural circulation loop for an integral type reactor, Int. Commun. Heat Mass Tran. 38 (2011) 1232-1238. 
  26. G. Wang, Y. Yan, S. Shi, X. Yang, M. Ishii, Experimental study on accident transients and flow instabilities in a PWR-type small modular reactor, Prog. Nucl. Energy 104 (2018) 242-250. 
  27. S. Wang, Y.-C. Lin, G. Wang, M. Ishii, Experimental investigation on flashing-induced flow instability in a natural circulation scaled-down test facility, Ann. Nucl. Energy 171 (2022), 109023. 
  28. R. Danforth, O. Hand, R. Ferri, C. Randaccio, Design of a Test Article and Test Facility to Investigate Flow-Induced Vibration of a Helical Coil Steam Generator, NuScale Power, LLC, Corvallis, OR (United States), 2022. 
  29. D. Papini, M. Colombo, A. Cammi, M.E. Ricotti, Experimental and theoretical studies on density wave instabilities in helically coiled tubes, Int. J. Heat Mass Tran. 68 (2014) 343-356. 
  30. M. Delgado, Y.A. Hassan, N.K. Anand, Experimental flow visualization study using particle image velocimetry in a helical coil steam generator with changing lateral pitch geometry, Int. J. Heat Mass Tran. 133 (2019) 756-768. 
  31. D. Breitenmoser, A. Manera, H.-M. Prasser, R. Adams, V. Petrov, High-resolution high-speed void fraction measurements in helically coiled tubes using X-ray radiography, Nucl. Eng. Des. 373 (2021), 110888. 
  32. K.M. Kim, I.C. Bang, Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform, Nucl. Eng. Technol. 53 (2021) 776-792. 
  33. I.J. Jin, D.Y. Lim, I.C. Bang, Development of fault diagnosis for nuclear power plant using deep learning and infrared sensor equipped UAV, Ann. Nucl. Energy 181 (2023), 109577. 
  34. I.J. Jin, D.Y. Lim, I.C. Bang, Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras, Nucl. Eng. Technol. 55 (2023) 493-505. 
  35. G.G. Loomis, Summary of the Semiscale Program, 1965-1986, EG and G Idaho, Inc., Idaho Falls, ID (United States), US Nuclear Regulatory …, 1987. 
  36. D.L. Reeder, Loft System and Test Description (5. 5-ft Nuclear Core 1 LOCES), Idaho National Engineering Lab., Idaho Falls (USA), 1978. 
  37. Y. Kukita, K. Tasaka, H. Asaka, T. Yonomoto, H. Kumamaru, The effects of break location on PWR small break LOCA: experimental study at the ROSA-IV LSTF, Nucl. Eng. Des. 122 (1990) 255-262. 
  38. M. Ishii, S.T. Revankar, T. Leonardi, R. Dowlati, M.L. Bertodano, I. Babelli, W. Wang, H. Pokharna, V.H. Ransom, R. Viskanta, The three-level scaling approach with application to the purdue university multi-dimensional integral test assembly (PUMA), Nucl. Eng. Des. 186 (1998) 177-211. 
  39. W.-P. Baek, C.-H. Song, B.-J. Yun, T.-S. Kwon, S.-K. Moon, S.-J. Lee, KAERI integral effect test program and the ATLAS design, Nucl. Technol. 152 (2005) 183-195. 
  40. H.-S. Park, H. Bae, S.-U. Ryu, B.-G. Jeon, J.-H. Yang, S.-J. Yi, Y.-J. Chung, Thermal-hydraulic research supporting the development of SMART, Nucl. Technol. (2023) 1-19.
  41. J.N. Reyes Jr., L. Hochreiter, Scaling analysis for the OSU AP600 test facility (APEX), Nucl. Eng. Des. 186 (1998) 53-109. 
  42. F. Mascari, G. Vella, B.G. Woods, F. D'auria, Analyses of the OSU-MASLWR experimental test facility, Sci. Technol. Nucl. Install. 2012 (2012). 
  43. J.N. Reyes, The dynamical system scaling methodology, in: 16th Int. Top. Meet. Nucl. React. Therm. Hydraul., 2015. 
  44. J.Y. Kim, Y.Y. Park, I.C. Bang, Investigation of the heat removal capability of the hybrid control rod in natural circulation-type SMR under station black out accident with MARS-KS code, in: Trans. Korean Nucl. Soc. Spring Meet., 2022. 
  45. L.L.C. NuScale Power, NuScale Standard Plant Design Certification Application, 2020. 
  46. M. Ishii, I. Kataoka, Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation, Nucl. Eng. Des. 81 (1984) 411-425. 
  47. N. Zuber, G.E. Wilson, M. Ishii, W. Wulff, B.E. Boyack, A.E. Dukler, P. Griffith, J. M. Healzer, R.E. Henry, J.R. Lehner, An integrated structure and scaling methodology for severe accident technical issue resolution: development of methodology, Nucl. Eng. Des. 186 (1998) 1-21. 
  48. G. Kocamustafaogullari, M. Ishii, Scaling of two-phase flow transients using reduced pressure system and simulant fluid, Nucl. Eng. Des. 104 (1987) 121-132. 
  49. G. Yadigaroglu, M. Zeller, Fluid-to-fluid scaling for a gravity-and flashing-driven natural circulation loop, Nucl. Eng. Des. 151 (1994) 49-64. 
  50. J.-J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3. 1, Ann. Nucl. Energy 26 (1999) 1611-1642. 
  51. D. Lee, A.M. Arigi, J. Kim, Algorithm for autonomous power-increase operation using deep reinforcement learning and a rule-based system, IEEE Access 8 (2020) 196727-196746. 
  52. D. Lee, P.H. Seong, J. Kim, Autonomous operation algorithm for safety systems of nuclear power plants by using long-short term memory and function-based hierarchical framework, Ann. Nucl. Energy 119 (2018) 287-299. 
  53. H.A. Saeed, M. Peng, H. Wang, A. Rasool, Autonomous control model for emergency operation of small modular reactor, Ann. Nucl. Energy 190 (2023), 109874. 
  54. C.F. Matozinhos, G.C.Q. Tomaz, T. Nguyen, A.A.C. dos Santos, Y. Hassan, Experimental measurements of turbulent flows in a rod bundle with a 3-D printed channel-type spacer grid, Int. J. Heat Fluid Flow 85 (2020), 108674. 
  55. G. Lee, Y. Joo, Y. Yu, H.-G. Kim, Dual-fluid topology optimization of printed-circuit heat exchanger with low-pumping-power design, Case Stud. Therm. Eng. 49 (2023), 103318. 
  56. I.G. Kim, I.C. Bang, Hydraulic control rod drive mechanism concept for passive in-core cooling system (PINCs) in fully passive advanced nuclear power plant, Exp. Therm. Fluid Sci. 85 (2017) 266-278. 
  57. K.M. Kim, I.C. Bang, Thermal-hydraulic phenomena inside hybrid heat pipe-control rod for passive heat removal, Int. J. Heat Mass Tran. 119 (2018) 472-483. 
  58. Y.S. Jeong, K.M. Kim, I.G. Kim, I.C. Bang, Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant, Appl. Therm. Eng. 90 (2015) 609-618. 
  59. K.M. Kim, I.C. Bang, Heat transfer characteristics and operation limit of pressurized hybrid heat pipe for small modular reactors, Appl. Therm. Eng. 112 (2017) 560-571. 
  60. A.M. Weinberg, I. Spiewak, Inherently safe reactors and a second nuclear era, Science 224 (1984) 1398-1402, 80. 
  61. T. Pedersen, PIUS-status and perspectives, Nucl. Eng. Des. 136 (1992) 167-177. 
  62. K. Hannerz, L. Nilsson, T. Pedersen, C. Pind, The PIUS pressurized water reactor: aspects of plant operation and availability, Nucl. Technol. 91 (1990) 81-88. 
  63. D. Babala, K. Hannerz, Pressurized water reactor inherent core protection by primary system thermohydraulics, Nucl. Sci. Eng. 90 (1985) 400-410. 
  64. 3D-printed Nuclear Reactor Promises Faster, More Economical Path to Nuclear Energy, Oak Ridge Natl. Lab., 2020. https://www.ornl.gov/news/3d-printed-nuclear-reactor-promises-faster-more-economical-path-nuclear-energy. (Accessed 6 August 2023). 
  65. General Electric, GE Digital Twin Analytic Engine for the Digital Power Plant, 2016. https://www.ge.com/digital/sites/default/files/Digital-Twin-for-the-digital-power-plant-.pdf. 
  66. G. Locatelli, A. Fiordaliso, S. Boarin, M.E. Ricotti, Cogeneration: an option to facilitate load following in Small Modular Reactors, Prog. Nucl. Energy 97 (2017) 153-161, https://doi.org/10.1016/J.PNUCENE.2016.12.012. 
  67. A. Ho, D. Hill, J. Hedengren, K.M. Powell, A nuclear-hydrogen hybrid energy system with large-scale storage: a study in optimal dispatch and economic performance in a real-world market, J. Energy Storage 51 (2022), 104510. 
  68. M. Ni, M.K.H. Leung, D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy 33 (2008) 2337-2354. 
  69. H.A. Gabbar, O.L.A. Esteves, Real-time simulation of a small modular reactor in-the-Loop within nuclear-renewable hybrid energy systems, Energies 15 (2022) 6588.