• Title/Summary/Keyword: Single layer ITO

Search Result 97, Processing Time 0.025 seconds

Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole) (단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성)

  • 윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.55-61
    • /
    • 1998
  • Organic light emitting devices from a single layer thin film with a hole transport polymer, poly(N-vinylcarbazole) (PVK) doped with 2-(4-bi phenyl)-5-(4-t-butyl-phenyl) -1,3,4-oxadiazole (Bu-PBD) as electron transporting molecules and Coumurine 6(C6), 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Rhodamine B as a emitter dye were fabricated. The sing1e layer structure and the use of soluble materials simplify the fabrication of devices by spin coating technique. The active layer consists of one polymer layer that is simply sandwiched between two electrodes, indium-tin oxide (ITO), and aluminum. In this structure, electron and hole inject from the electrodes to the PVK : Bu-PBD active layer. Respectively, Blue, green and orange colored emission spectrum by the use of TPB, C6, Rhodamine B dye emitted at 481nm, 500nm and 585nm were achieved during applied voltages. PVK materials can be useful as the host polymer to be molecularly doped with other organic dyes of the different luminescence colors. And EL color can be tuned to the full visible wavelength.

  • PDF

Enhancement of Methanol Gas Sensitivity of Cu Intermediate ITO Film Gas Sensors

  • Shin, Chang-Ho;Chae, Joo-Hyun;Kim, Yu-Sung;Jeong, Cheol-Woo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.267-270
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Cu/ITO (ICI) multilayer films were prepared on glass substrates with a reactive radio frequency (RF) magnetron sputter without intentional substrate heating, and then the influence of the Cu interlayer on the methanol gas sensitivity of the ICI films were considered. Although both ITO and ICI film sensors had the same thickness of 100 nm, the ICI sensors had a sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm. The ICI films showed a ten times higher carrier density than that of the pure ITO films. However, the Cu interlayer may also have caused the decrement of carrier mobility because the interfaces between the ITO and Cu interlayer acted as a barrier to carrier movement. Although the ICI films had two times a lower mobility than that of the pure ITO films, the ICI films had a higher conductivity of $3.6{\cdot}10^{-4}\;{\Omega}cm$ due to a higher carrier density. The changes in the sensitivity of the film sensors caused by methanol gas ranging from 50 to 500 ppm were measured at room temperature. The ICI sensors showed a higher gas sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the ICI film sensors have the potential to be used as improved methanol gas sensors.

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives (광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성)

  • Lee Jeong-Hwan;Choi Hee-Lack;Lee Bong
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.

Luminescent and electrical properties of MEH-PPV and 1,1,4,4-Tetraphenyl-1,3-butadiene Double Layer films (MEH-PPV와 TPB 다층박막의 광발광 및 전기적 특성)

  • 이명호;김영관;신동명;최종선;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.163-166
    • /
    • 1997
  • Electroluminescent(EL) dcvice based on organic thin layers have attracted lots of interests because of thier possible application as large-area light-emitting displays. It was known that MEH-PPV and 1, 1, 4, 4, -Tetraphenyl-1, 3-butadiene(TPB) has red and blue emission peak at 580nm and 480nm, respectively. In this study, MEH-PPV films and TPB films were prepared by spin coating and vacuum deposition method, respectively. Films of MEH-PPV and TPB double layer were also prepared by the same method. Photoluminescent(PL) characteristics of these single and doubler layers were investigated, where a cell structure of glass substrate/ITO/MEH-PPV and/or TPB/Al was employed. It was found that the photoluminescent efficiency of TPB film was higher than that of MEH-PPV film with a single layer and also with a double structure. These films have also different I-V characteristics.

  • PDF

Metal Oxide-Based Heterojunction Broadband Photodetector (산화물 반도체 기반의 이종접합 광 검출기)

  • Lee, Sang-eun;Lee, Gyeong-Nam;Ye, Sang-cheol;Lee, Sung-ho;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 2018
  • In this study, double-layered TCO (transparent conductive oxide) films were produced by depositing two distinct TCO materials: $SnO_2$ works as an n-type layer and ITO (indium-doped tin oxide) serves as a transparent conductor. Both transparent conductive oxide-films were sequentially deposited by sputtering. The electrical and optical properties of single-layered TCO films ($SnO_2$) and double-layered TCO ($ITO/SnO_2$) films were investigated. A TCO-embedding photodetector was realized through the formation of an $ITO/SnO_2/p-Si/Al$ layered structure. The remarkably high rectifying ratio of 400.64 was achieved with the double-layered TCO device, compared to 1.72 with the single-layered TCO device. This result was attributed to the enhanced electrical properties of the double-layered TCO device. With respect to the photoresponses, the photocurrent of the double-layered TCO photodetector was significantly improved: 1,500% of that of the single-layered TCO device. This study suggests that, due to the electrical and optical benefits, double-layered TCO films are effective for enhancing the photoresponses of TCO photodetectors. This provides a useful approach for the design of photoelectric devices, including solar cells and photosensors.

Fabrication and Characterization of the ITO/Au/ITO Thin Film Gas Sensor by RF Magnetron Sputtering and electron Irradiation (RF 스퍼터와 전자빔 조사를 이용한 ITO/Au/ITO 가스센서 제조 및 특성 평가)

  • Heo, Sung-Bo;Lee, Hak-Min;Kim, Yu-Sung;Chae, Ju-Hyun;You, Yong-Zoo;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.2
    • /
    • pp.87-91
    • /
    • 2011
  • Single layer Sn doped $In_2O_3$ (ITO) films and ITO 50 nm / Au 10 nm / ITO 40 nm (IAI) multilayer films were prepared with electron beam assisted magnetron sputtering on glass substrates. The effects of the Au interlayer, post-deposition atmosphere annealing and intense electron irradiation on the methanol gas sensitivity were investigated at room temperature. As deposited ITO films did not show any diffraction peaks in the XRD pattern, while the IAI films showed the diffraction peak for $In_2O_3$ (400). In this study, the gas sensitivity of ITO and IAI films increased proportionally with the methanol vapor concentration and an intense electron beam irradiated IAI film shows the higher sensitivity than the others film. From the XRD pattern, it is supposed that increased crystallization promotes the gas sensitivity. This approach is promising in gaining improvement in the performance of IAI gas sensors used for the detection of methanol vapor at room temperature.

Electrochemical Characteristics of Water-Soluble Phosphate-Functionalized Naphthalene- and Perylene-Bisimides and Their Zirconium Bisphosphate Multilayers on ITO Electrode

  • Cho, Kwang Je;Kim, Yeong Il;Shim, Hyun Kwan
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • N,N'-bis(ethyldihydrogen phosphate)-1,4,5,8-naphthalene bis(dicarboximide) (EPNI) and N,N'-bis(ethyldihydrogen phosphate)-3,4,9,10-perylene bis(dicarboximide) (EPPI) and their zirconium bisphosphate multilayers (Zr-EPNI and Zr-EPPI), that had been briefly reported by us, were further investigated in terms of their electrochemical properties. EPNI in aqueous solution showed typical two reversible reductions at ITO electrode but the reductions were strongly dependent on solution pH while EPPI showed only an irreversible reduction. The single and mixed multilayers of Zr-EPNI and Zr-EPPI were well constructed on ITO electrode by the alternate adsorptions of zirconium ion and the bisimides. While Zr-EPNI multilayer on ITO electrode showed single broad reversible reduction with $E_{1/2}=-0.68V$, Zr-EPPI gave two separated reductions at $E_{1/2}=-0.54$ and -0.81 V vs SCE, quite differently from the solution properties. The average layer densities of the multilayers were estimated as $1.5{\times}10^{-10}$ and $2.3{\times}10^{-10}mol/cm^2$ for Zr-EPNI and Zr-EPPI, respectively. Both the monolayers of Zr-EPNI and Zr-EPPI could not completely block the electron transfer between $Fe(CN){_6}^{3-}$ in solution and ITO electrode but 3-5 layers of Zr-EPNI and Zr-EPPI could block it completely and mediated the one-way electron transfer at the potential shifted to their reduction potentials. When the monolayer of zirconium 1,10-decanediylbisphosphonate (Zr-DBP) was used as a sublayer of Zr-EPNI and Zr-EPPI layers, the mediated electron transfer became prominent without any direct electron transfer.

Emission Characteristics of Poly(3-alkylthiophene) with TPD Addition (TPD 첨가에 따른 poly(3-alkylthiophene)의 발광특성)

  • 서부완;김주승;구할본;이경섭;박복기;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.308-311
    • /
    • 2000
  • The organic electroluminescene (EL) device has gathered much interested because of its potential in materials and simple device fabrication. We fabricated EL device which have a mixed single emitting layer containing N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine [TPD] and poly(3-hexylthiophene) [P3HT]. The molar ratio between P3HT and TPD chaged with 1:1, 3:1, 5:1, 3:2 and 5:2. EL intensity of ITO/P3HT+TPD/Mg:In devices is enhanced by addition of TPD into P3HT. This can be explained that the energy transfer occurs from TPD to P3HT. Recombination probability increases in emitting layer because that TPD as hole transport material plays a role more injection hole and Mg:In (3.7eV) electrode has low work function make easily electron injection. ITO/P3HT+TPD(5:2)/Mg:In devices emit orange-red light at 28V.

  • PDF

금속이 코팅된 PET필름의 수분침투 특성 평가

  • Hwang, Bin;Choe, Yeong-Jun;Park, Gi-Jeong;Kim, Hoe-Bong;Jo, Yeong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.351-351
    • /
    • 2010
  • OLED(organic light emitting diode)는 액정디스플레이를 대체할 차세대 평판디스플레이로 많은 주목을 받고 있다. 현재 많이 사용되고 있는 OLED의 기판재료는 Glass기판이지만 차세대 Flexible한 display에서의 적용을 위해서는 가볍고 유연한 plastic을 기판 재료로 사용 할 것으로 보인다. 하지만 plastic이 기판재료로 된 OLED의 가장 큰 단점중의 하나가 수분과 산소에 민감하여 열화를 초래한다는 것이다. 이런 수분침투와 열화 과정으로 인해 OLED의 발광효과가 약해져 OLED의 수명과 직접적으로 연결된다. 하여 외부에서 OLED내부로 유입되는 산소, 수분으로 부터 발광재료와 전극의 산화를 방지하며 외부의 충격으로부터 소자를 보호하기 위한 봉지기술은 반드시 필요하다. 따라서 본 연구에서는, flexible한 OLED에 적용되는 금속 코팅한 막의 적층구조 및 기판의 노출온도에 따른 금속 코팅막의 수분침투 특성에 대해 MOCON의 weight gain test (WGT)를 통해 barrier layer에 대해 평가하고 이에 대한 mechanism을 확립하는데 그 목적이 있다. 금속을 코팅한 막은 OLED의 cathode와 anode 재료로 많이 사용되는 Al과 ITO를 sputter장비를 이용해 single layer와 double-layer의 두 가지 구조로 PET기판에 증착하였다. 증착한 Al막의 두께는 각각 50 nm, 100 nm, 200 nm, 400 nm 등 4가지로 하였다. double-layer의 경우에는 총 두께를 절반씩 기판의 양쪽에 증착하였다. 적층구조에 따른 수분침투 특성 평가 결과로 보면 같은 두께일 때 double-layer는 single layer에 비해서 모든 시편에서 수분의 투습율이 낮음으로써 더 좋은 수분침투의 barrier 특성을 나타내었다. 특히 100 nm이상인 경우 투습율은 예상한 값보다 50%이상 낮게 나타났다.

  • PDF