• Title/Summary/Keyword: Single crystalline

Search Result 679, Processing Time 0.047 seconds

Carbon이 첨가된 Ge-doped SbTe 상변화재료의 박막 및 소자 특성

  • An, Hyeong-U;Park, Yeong-Uk;O, Cheol;Jang, Gang;Jeong, Jeung-Hyeon;Lee, Su-Yeon;Jeong, Du-Seok;Kim, Dong-Hwan;Jeong, Byeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.55-55
    • /
    • 2011
  • 질소 등을 GST225 상변화재료에 첨가시켜 비저항을 증가시킴으로서 PCRAM의 동작 전류를 감소시킨 연구가 선행된 바 있다. 본 연구에서는 GST225와 달리 고속 동작 특성을 갖는 것으로 널리 알려진 Ge-doped SbTe (GeST) 상변화 재료에 Carbon을 첨가하여 박막 특성을 연구하여 동작 전류 감소의 가능성을 타진하였다. 실험을 위한 박막 제작을 위해 2 inch size의 GeST 및 C doped GeST (C-GeST) single target을 이용하여 RF magnetron co-sputtering 하였다. 박막은 carbon이 첨가되지 않은 GeST와 carbon 첨가량이 늘어나는 순서로 C-GeST 1, C-GeST 2, C-GeST 3로 구성된다. 이 때 제작한 박막의 composition analysis를 위해 XRF/RBS/AES가 사용되었고 제작된 박막의 기본적인 특성평가를 위해 resistivity(${\rho}$)와 crystallzation temp.(Cx), surface morphology(AFM), x-ray diffraction pattern(XRD)를 측정하였다. 실험결과 GeST, C-GeST 1, C-GeST 2, C-GeST 3 박막의 Cx는 각각 209, 225, 233, $245^{\circ}C$로 측정되어 carbon 첨가량이 증가됨에 따라 결정화 온도가 증가되는 것을 알 수 있었다. 또한 ${\rho}$도 마찬가지로 annealing 온도를 약 $320^{\circ}C$로 할 경우 ${\rho}$(as-dep)와 ${\rho}$(crystalline) 모두 0.03 / $2.61*10^{-6}$, 0.08 / $7.93*10^{-6}$, 0.09 / $11.99*10^{-6}$, 0.13 / $13.49*10^{-6}{\Omega}{\cdot}m$로 증가하였다. 증가된 ${\rho}$의 원인이 박막의 grain size의 감소라고 단언 할 수는 없으나 AFM 측정결과 grain이라고 추측되는 박막 feature들의 size가 점차 감소하는 것을 확인하였다.

  • PDF

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

Preparation and Characterization of Suvarna Bhasma Parada Marit - Characterization of Suvarna Bhasma Parada Marit -

  • Thakur, Kapil;Gudi, Ramacharya;Vahalia, Mahesh;Shitut, Shekhar;Nadkarni, Shailesh
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.36-44
    • /
    • 2017
  • Objectives: The goal of this study was to characterize Suvarna Bhasma Parada Marit by using the Ayurvedic test parameters, physico-chemical tests, and various instrumentation techniques. Methods: Suvarna Bhasma, an Ayurvedic formulation manufactured as per Bharat Bhaishajya Ratnakar 5/8357 (BBR), has been studied using various instrumentation techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), laser particle size distribution (PSD) analysis, fourier transform infrared spectroscopy (FT-IR), and atomic absorption spectroscopy (AAS), and physico-chemical parameters, such as the loss on drying (LOD), loss on ignition (LOI), and acid insoluble Ash (AIA) were determined. In addition, Ayurvedic tests, such as Rekhapurnatva (enterable in the furrows of the fingers), Varitaratwa (floatable over water), Nirdhoomta (smokeless), Dantagre Kach-Kach (gritty particle feeling between the teeth), were performed. Results: The XRD study showed Suvarna Bhasma to be crystalline in nature and to contain more than 98% gold. The mean size of the gold crystallites was less than 10 microns, and the morphology was globular and irregular. Suvarna Bhasma contains gold as its single and major element, with EDAX and FT-IR spectra showing that it is more than 98% pure gold. The moisture content (LOD) is less than 0.5%, the LOI is less than 2%, and the AIA is not less than 95%. The Ayurvedic tests, as specified above, helped to confirm the quality of Suvarna bhasma prepared as per the text reference (BBR). Conclusion: This chemical characterization of Suvarna Bhasma performed in this study by using modern instrumentation techniques will be helpful in understanding its pharmacological actions and will help in establishing quality protocols and specifications to substantiate the safety, efficacy & quality of Suvarna Bhasma.

Influence of the MgO-TiO2 Co-Additive Content on the Phase Formation, Microstructure and Fracture Toughness of MgO-TiO2-Reinforced Dental Porcelain Nanocomposites

  • Waiwong, Ranida;Ananta, Supon;Pisitanusorn, Attavit
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • The influence of the co-additive concentration (0 - 45 wt% with an interval of 5 wt%) of MgO-$TiO_2$ on the phase formation, microstructure and fracture toughness of MgO-$TiO_2$-reinforced dental porcelain nanocomposites derived from a one-step sintering technique were examined using a combination of X-ray diffraction, scanning electron microscopy and Vickers indentation. It was found that MgO-$TiO_2$-reinforced dental porcelain nanocomposites exhibited significantly higher fracture toughness values than those observed in single-additive (MgO or $TiO_2$)-reinforced dental porcelain composites at any given sintering temperature. The amount of MgO-$TiO_2$ as a co-additive was found to be one of the key factors controlling the phase formation, microstructure and fracture toughness of these nanocomposites. It is likely that 30 wt% of MgO-$TiO_2$ as a co-additive is the optimal amount for $MgTi_2O_5$ and $Mg_2SiO_4$ crystalline phase formation to obtain the maximum relative density (96.80%) and fracture toughness ($2.60{\pm}0.07MPa{\cdot}m^{1/2}$) at a sintering temperature of $1000^{\circ}C$.

Optical and Structural Properties of Ammoniated GaOOH and ZnO Mixed Powders (암모니아 분위기에서 열처리된 GaOOH와 ZnO 혼합분말의 구조적·광학적 성질)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.575-580
    • /
    • 2012
  • The purpose of this study is to investigate the crystalline structure and optical properties of (GaZn)(NO) powders prepared by solid-state reaction between GaOOH and ZnO mixture under $NH_3$ gas flow. While ammoniation of the GaOOH and ZnO mixture successfully produces the single phase of (GaZn)(NO) solid solution within a GaOOH rich composition of under 50 mol% of ZnO content, this process also produces a powder with coexisting (GaZn)(NO) and ZnO in a ZnO rich composition over 50 mol%. The GaOOH in the starting material was phase-transformed to ${\alpha}$-, ${\beta}-Ga_2O_3$ in the $NH_3$ environment; it was then reacted with ZnO to produce $ZnGa_2O_4$. Finally, the exchange reaction between nitrogen and oxygen atoms at the $ZnGa_2O_4$ powder surface forms a (GaZn)(NO) solid solution. Photoluminescence spectra from the (GaZn)(NO) solid solution consisted of oxygen-related red-emission bands and yellow-, green- and blue-emission bands from the Zn acceptor energy levels in the energy bandgap of the (GaZn)(NO) solid solutions.

High Density MRAM Device Technology Based on Magnetic Tunnel Junctions (자기터널접합을 활용한 고집적 MRAM 소자 기술)

  • Chun, Byong-Sun;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • Ferromagnetic amorphous $Ni_{16}Fe_{62}Si_8B_{14}$ and $Co_{70.5}Fe_{4.5}Si_{15}B_{10}$ layers have been devised and incorporated as free layers of magnetic tunnel junctions (MTJs) to improve MRAM reading and writing performance. The NiFeSiB and CoFeSiB single-layer film exhibited a lower saturation magnetization ($Ms=800emu/cm^3,\;and\;560emu/cm^3$, respectively) compared to that of a $Co_{90}Fe_{10}(Ms=1400emu/cm^3)$. Because amorphous ferromagnetic materials have lower Ms than crystalline ones, the MTJs incorporating amorphous ferromagnetic materials offer lower switching field ($H_{sw}$) values than that of the traditional CoFe-based MTJ. The double-barrier MTJ with an amorphous NiFeSiB free layer offered smooth surface resulting in low bias voltage dependence, and high $V_h\;and\;V_{bd}$ compared with the values of the traditional CoFe-based MTJ.

Synthesis and luminescent properties of $Er^{3+}$ doped $CaZrO_3$ long persistent phosphors ($Er^{3+}$를 첨가한 $CaZrO_3$ 축광성 형광체의 합성 및 발광 특성 분석)

  • Park, Byeong-Seok;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Novel long persistent phosphors of $CaZrO_3:Er^{3+}$ have been synthesized by traditional solid state reaction method. The long persistent phosphor crystalline particles were characterized by the X-ray diffraction (XRD), photoluminescence spectrophotometer, thermoluminescence (TL) and luminance meter. The results reveal that the samples are composed of single $CaZrO_3$ phase. The broadband emission spectra of 446 nm peak and 550 nm peak was revealed by synthesized at high temperature in $N_2$ gas. Green long persistent phosphors have been observed in the sys_em for over 6 h after UV irradiation (254 nm). The main emission peak was ascribed to $Er^{3+}$ ions transition from $^5D_{5/2}{\rightarrow}^4F_{9/2},\;^2H_{12/2},\;^4S_{3/2}{\rightarrow}^4I_{13/2}\;and\;^2G_{9/2}{\rightarrow}^4I_{13/2}$, and the afterglow may be ascribed to the suitable trap centers in the $CaZrO_3$ host lattice.

Synthesis of Titanium Dioxide Nanoparticles with a High Crystalline Characteristics (높은 결정성을 갖는 이산화티탄 나노입자의 합성)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 2017
  • In the age of oil exhaustion, low cost, semi-transparent solar cell, the dye-sensitized solar cell (DSC) has attracted significant attention since 1991 of $Gr{\ddot{a}}tzel$ report. To enhance the light-harvest capability of the photoelectric electrode, and efficiency of photoelectric transformation of the DSC, scattering layer of various structure have been proposed to photoelectric electrode materials. The scattering center of scattering layer needs the large titanium dioxide nanoparticles of 250 - 300 nm in diameter. In this study, the large sized $TiO_2$ nanocyrstals of around 300 nm were synthesized using the modified sol-gel process. According to the analysis of XRD and TEM, the synthesized $TiO_2$ nanoparticles exhibit single crystals of anatase phase. The optical transmittance of the synthesized titanium dioxide film prepared by spin coating is around 50% at 550 nm. It is suitable for scattering layer as a scattering center, and expected to enhance the efficiency of photoelectric transformation of the DSC.

Preparation and Photoluminescence Properties of LiBaPO4:Eu2+ Phosphors by Solid State Reaction Method (고상반응법에 의한 LiBaPO4:Eu2+ 계 형광체의 제조 및 광 발광 특성)

  • Park, In Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • LiBaPO4:Eu2+ phosphors with stoichiometric and nonstoichiometric compositions were prepared using a solid state reaction followed by heat treatment in reduced atmosphere, and the crystal structures and photoluminescence(PL) properties of the powders were investigated by x-ray powder diffraction and luminescence spectrometer. At 900℃, the Ba3(PO4)2 phase as the intermediate phase was observed with the LiBaPO4 phase as the main crystalline phase. Samples with a low europium concentration at 1,000℃ belonged to the trigonal structure, whereas samples with Eu2+ content more than 4 mol% showed monoclinic structure. In the nonstoichiometric compositions of 4 mol% Eu2+ and above, a single phase of Eu2+-doped LiBaPO4, showing bluish green emission, was formed.

Magnetic and Structural Properties of CoFeZr Alloy Films and Magnetoresistive Properties of Spin Valves Incorporating Amorphous CoFeZr Layer (CoFeZr 합금박막의 미세구조, 자기적 특성 및 비정질 CoFeZr 합금박막을 사용한 스핀밸브의 자기저항 특성에 관한 연구)

  • Ahn, Whang-Gi;Park, Dae-Won;Kim, Ki-Su;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.227-231
    • /
    • 2008
  • Magnetic and structural properties of CoFeZr alloy films as a function of Zr concentration and magnetoresistive properties of spin valves incorporated with amorphous CoFeZr alloy films have been studied. Magnetization and coercivity of CoFeZr alloy films decreased as the Zr content increased. A single amorphous CoFeZr phase was formed when the Zr content is about above 18 at%. Magnetoresistance ratio and exchange coupling field of spin valves with amorphous CoFeZr were reduced slightly as compared with spin valves with CoFe because the resistance of amophous CoFeZr is higher than that of crystalline CoFe. However, the ${\Delta}{\rho}$ of spin valves with amorphous CoFeZr was improved due to reduction of current shunting.