DOI QR코드

DOI QR Code

Synthesis of Titanium Dioxide Nanoparticles with a High Crystalline Characteristics

높은 결정성을 갖는 이산화티탄 나노입자의 합성

  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김기출 (목원대학교 신소재화학공학)
  • Received : 2017.09.27
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

In the age of oil exhaustion, low cost, semi-transparent solar cell, the dye-sensitized solar cell (DSC) has attracted significant attention since 1991 of $Gr{\ddot{a}}tzel$ report. To enhance the light-harvest capability of the photoelectric electrode, and efficiency of photoelectric transformation of the DSC, scattering layer of various structure have been proposed to photoelectric electrode materials. The scattering center of scattering layer needs the large titanium dioxide nanoparticles of 250 - 300 nm in diameter. In this study, the large sized $TiO_2$ nanocyrstals of around 300 nm were synthesized using the modified sol-gel process. According to the analysis of XRD and TEM, the synthesized $TiO_2$ nanoparticles exhibit single crystals of anatase phase. The optical transmittance of the synthesized titanium dioxide film prepared by spin coating is around 50% at 550 nm. It is suitable for scattering layer as a scattering center, and expected to enhance the efficiency of photoelectric transformation of the DSC.

석유 고갈의 시대에 저가이면서 반투명한 특징을 갖고 있는 염료감응형 태양전지(DSC)는 1991년 $Gr{\ddot{a}}tzel$의 연구결과 보고 이후 많은 주목을 받아왔다. 염료감응형 태양전지의 광전극의 빛 수확 성능을 증진시키고, 궁극적으로 광전변환효율을 향상시키기 위하여 다양한 구조를 갖는 산란층이 광전극 소재로 제안되었다. DSC 광전극의 산란층에서 산란의 중심으로는 지름이 250 - 300 nm 정도의 크기를 갖는 비교적 큰 이산화티탄 나노입자가 필요하다. 본 연구에서는 변형된 졸겔 공정을 이용하여 약 300 nm 크기의 이산화티탄 나노결정을 합성하였다. XRD와 TEM 분석결과에 의하면, 합성된 이산화티탄 나노입자는 아나타제 상의 단결정 특성을 나타내었다. 합성된 이산화티탄 나노입자를 이용하여 스핀 코팅 공정으로 제조된 이산화티탄 박막의 광학적 투과율은 550 nm 파장에서 약 50%로 측정되었다. 이처럼 적당한 투과율은 DSC 산란층의 산란 중심으로 사용하기에 적합하며, DSC의 광전변환효율 향상에 적절하게 기여할 것으로 기대된다.

Keywords

References

  1. Y. A. Noh & K. C. Kim. (2017). Transparent Hydrophobic Anti-Reflection Coating with $SiO_2$/$TiO_2$ Thin Layers. Journal of the Korea Academia. Industrial cooperation Society, 18(3), 1-6. https://doi.org/10.5762/KAIS.2017.18.1.1
  2. H. J. Hong, M. C. Heo, S. H. Hahn, E. J. Kim, C. W. Lee & J. H. Joo. (2006). Properties of Low. Temperature Sol-Gel $TiO_2$ Thin Films with Catalyst Content. Hankook Kwanghak Hoeji, 17(3), 296-302. https://doi.org/10.3807/KJOP.2006.17.3.296
  3. X. Chen & S. S. Mao. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chemical Reviews, 107(7), 2891-2959. DOI : 10.1021/cr0500535
  4. A. R. Park, S. H. Kim, D. G. Kim, H. B. Gu & H. C. Ki. (2012). Synthesis of $TiO_2$ by Sol-Gel Method & Electrochemical Properties of DSSCs with Controlling pH. Journal of the Korean institute of electronic material engineers, 25(8), 620-625. DOI : 10.4313/jkem.2012.25.8.620
  5. B. O'Regan & M. Gratzel. (1991). A low. cost, high. efficiency solar cells based on dye-sensitized colloidal $TiO_2$ films. Nature, 353, 737-740. DOI : 10.1038/353737a0
  6. F. Huang, D. Chen, X. L. Zhang, R. A. Caruso & Y. B. Cheng. (2010). Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous $TiO_2$ Beads for High. Efficiency Dye-Sensitized Soalr Cells. Advanced Functional Materials, 20, 1301-1305. DOI : 10.1002/adfm.200902218
  7. D. Chen, F. Huang, Y. B. Cheng & R. A. Caruso. (2009). Mesoporous Anatase $TiO_2$ Beads with High Surface Area & Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Soalr Cells. Advanced Materials, 21, 2206-2210. DOI : 10.1002/adma.200802603
  8. Z. S. Wang, H. Kawauchi, T. Kashima & H. Arakawa. (2004). Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248, 1381-1389. DOI : 10.1016/j.ccr.2004.03.006
  9. S. Hore, C. Vetter, C. Prahl, M. Niggemann & R. Kern. (2005). Scattering spherical voids in nanocrystalline $TiO_2$-enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 15, 2011-2013. DOI : 10.1039/b418658n
  10. J. Ferber & J. Luther. (1998). Computer simulation of light scattering & absorption in dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 54, 265-275. DOI : 10.1016/s0927-0248(98)00078-6
  11. A. S. Barnard & L. A. Curtiss. (2005). Prediction of $TiO_2$ Nanoparticle Phase & Shape Transitions Controlled by Surface Chemistry. Nano Letters, 5(7), 1261-1266. DOI : 10.1021/nl050355m
  12. H. Meng, B. Wang, S. Liu, R. Jiang & H. Long. (2013). Hydrothermal preparation, characterization & photocatalytic activity of $TiO_2$/Fe-$TiO_2$ composite catalysts. Ceramics International, 39, 5785-5793. DOI : 10.1016/j.ceramint.2012.12.098
  13. J. S. Lee, K. H. You & C. B. Park. (2012). Highly Photoactive, Low Bandgap $TiO_2$ Nanoparticles Wrapped by Graphene. Advanced Materials, 24(8), 1133-1137. DOI : 10.1002/adma.201290038
  14. H. H. Jung, J. H. Kim, J. Hwang, T. Y. Lim & D. G. Choi. (2010) Fabrication of super hydrophilic $TiO_2$ thin film by a liquid phase deposition. Journal of the Korean Crystal Growth & Crystal Technology, 20(5), 227-231. DOI : 10.6111/jkcgct.2010.20.5.227
  15. J. H. Kim, H. H. Jung, J. Hwang, Y. Cho & T. Y. Lim. (2010). Properties of $TiO_2$ thin films fabricated with surfactant by a sol-gel method. Journal of the Korean Crystal Growth & Crystal Technology, 20(6), 267-271. DOI : 10.6111/jkcgct.2010.20.6.267