Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2017.7.5.053

Synthesis of Titanium Dioxide Nanoparticles with a High Crystalline Characteristics  

Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of Convergence for Information Technology / v.7, no.5, 2017 , pp. 53-58 More about this Journal
Abstract
In the age of oil exhaustion, low cost, semi-transparent solar cell, the dye-sensitized solar cell (DSC) has attracted significant attention since 1991 of $Gr{\ddot{a}}tzel$ report. To enhance the light-harvest capability of the photoelectric electrode, and efficiency of photoelectric transformation of the DSC, scattering layer of various structure have been proposed to photoelectric electrode materials. The scattering center of scattering layer needs the large titanium dioxide nanoparticles of 250 - 300 nm in diameter. In this study, the large sized $TiO_2$ nanocyrstals of around 300 nm were synthesized using the modified sol-gel process. According to the analysis of XRD and TEM, the synthesized $TiO_2$ nanoparticles exhibit single crystals of anatase phase. The optical transmittance of the synthesized titanium dioxide film prepared by spin coating is around 50% at 550 nm. It is suitable for scattering layer as a scattering center, and expected to enhance the efficiency of photoelectric transformation of the DSC.
Keywords
Cystalline characteristics; Sattering layer; Sol-Gel process; Snthesis; Ttanium dioxide;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. H. Kim, H. H. Jung, J. Hwang, Y. Cho & T. Y. Lim. (2010). Properties of $TiO_2$ thin films fabricated with surfactant by a sol-gel method. Journal of the Korean Crystal Growth & Crystal Technology, 20(6), 267-271. DOI : 10.6111/jkcgct.2010.20.6.267   DOI
2 Y. A. Noh & K. C. Kim. (2017). Transparent Hydrophobic Anti-Reflection Coating with $SiO_2$/$TiO_2$ Thin Layers. Journal of the Korea Academia. Industrial cooperation Society, 18(3), 1-6.   DOI
3 H. J. Hong, M. C. Heo, S. H. Hahn, E. J. Kim, C. W. Lee & J. H. Joo. (2006). Properties of Low. Temperature Sol-Gel $TiO_2$ Thin Films with Catalyst Content. Hankook Kwanghak Hoeji, 17(3), 296-302.   DOI
4 X. Chen & S. S. Mao. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chemical Reviews, 107(7), 2891-2959. DOI : 10.1021/cr0500535   DOI
5 A. R. Park, S. H. Kim, D. G. Kim, H. B. Gu & H. C. Ki. (2012). Synthesis of $TiO_2$ by Sol-Gel Method & Electrochemical Properties of DSSCs with Controlling pH. Journal of the Korean institute of electronic material engineers, 25(8), 620-625. DOI : 10.4313/jkem.2012.25.8.620   DOI
6 B. O'Regan & M. Gratzel. (1991). A low. cost, high. efficiency solar cells based on dye-sensitized colloidal $TiO_2$ films. Nature, 353, 737-740. DOI : 10.1038/353737a0   DOI
7 F. Huang, D. Chen, X. L. Zhang, R. A. Caruso & Y. B. Cheng. (2010). Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous $TiO_2$ Beads for High. Efficiency Dye-Sensitized Soalr Cells. Advanced Functional Materials, 20, 1301-1305. DOI : 10.1002/adfm.200902218   DOI
8 D. Chen, F. Huang, Y. B. Cheng & R. A. Caruso. (2009). Mesoporous Anatase $TiO_2$ Beads with High Surface Area & Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Soalr Cells. Advanced Materials, 21, 2206-2210. DOI : 10.1002/adma.200802603   DOI
9 S. Hore, C. Vetter, C. Prahl, M. Niggemann & R. Kern. (2005). Scattering spherical voids in nanocrystalline $TiO_2$-enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 15, 2011-2013. DOI : 10.1039/b418658n   DOI
10 Z. S. Wang, H. Kawauchi, T. Kashima & H. Arakawa. (2004). Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248, 1381-1389. DOI : 10.1016/j.ccr.2004.03.006   DOI
11 J. Ferber & J. Luther. (1998). Computer simulation of light scattering & absorption in dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 54, 265-275. DOI : 10.1016/s0927-0248(98)00078-6   DOI
12 A. S. Barnard & L. A. Curtiss. (2005). Prediction of $TiO_2$ Nanoparticle Phase & Shape Transitions Controlled by Surface Chemistry. Nano Letters, 5(7), 1261-1266. DOI : 10.1021/nl050355m   DOI
13 H. Meng, B. Wang, S. Liu, R. Jiang & H. Long. (2013). Hydrothermal preparation, characterization & photocatalytic activity of $TiO_2$/Fe-$TiO_2$ composite catalysts. Ceramics International, 39, 5785-5793. DOI : 10.1016/j.ceramint.2012.12.098   DOI
14 J. S. Lee, K. H. You & C. B. Park. (2012). Highly Photoactive, Low Bandgap $TiO_2$ Nanoparticles Wrapped by Graphene. Advanced Materials, 24(8), 1133-1137. DOI : 10.1002/adma.201290038   DOI
15 H. H. Jung, J. H. Kim, J. Hwang, T. Y. Lim & D. G. Choi. (2010) Fabrication of super hydrophilic $TiO_2$ thin film by a liquid phase deposition. Journal of the Korean Crystal Growth & Crystal Technology, 20(5), 227-231. DOI : 10.6111/jkcgct.2010.20.5.227   DOI