• Title/Summary/Keyword: Single cell Performance

Search Result 493, Processing Time 0.036 seconds

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

Traffic Delay Guarantee using Deterministic Service in Multimedia Communication (멀티미디어 통신에서 결정론적 서비스를 이용한 트래픽 지연 보장)

  • 박종선;오수열
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.101-114
    • /
    • 2002
  • The real multimedia application in wide area communication needs the guaranteed performance of communication service. Therefore, the resource is reserved at the moment of traffic burst and the region of connection admission possibility is widened at the basis of maximum cell rate. This of study shows that the end-to-end traffic delay to the traffic of burst state is guaranteed when the total of maximum transmission rate is higher than link speed by using the region of deterministic delay. The network load rate of connection admission can be improved by the inducement of delay bounds consideration each traffic characteristic to guarantee the end-to-end delay of network from single switch. This suggested buffering system using deterministic service do not give any influence to service quality and can guarantee the bounds of end-to-end delay. And it can also reduce the load of network even if the delay is increased according to the burst traffic characteristic. The above suggested system can be applied effectively to the various kinds of general network specification which admit both real time trafnc service and non-real time traffic service.

  • PDF

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL (GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰)

  • Kim, Han-Sang;Ji, Yong-Whi;In, Ji-Hyun;An, Ji-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

A Hardware ORB for Supporting the SCA-based Component Development in FPGA (FPGA에서 SCA 컴포넌트 개발을 지원하는 하드웨어 ORB)

  • Bae, Myung-Nam;Lee, Byung-Bog;Park, Ae-Soon;Lee, In-Hwan;Kim, Nae-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.185-196
    • /
    • 2009
  • SCA is proposed in order to operate various wireless systems in the single terminal platforms and uses the CORBA middleware to guarantee the platform-independence for software components. As the reconstruction demand is expanded in the software component to the logic level to many reasons, CORBA has to guarantee the independence of hardware on board. Accordingly. the characteristics depending on hardware board is ed. And the IDL-based interworking interface about the component has to be provided. In this paper, we described about local transport for guaranteeing the independency on the hardware board and the HAO Core for providing a coupling by the CORBA IDL identically with the other component. HAO produced at 2,900 logic cell size in average and provided the performance of the tens times than the software component. Through the use of HAO in the SCA-based development environment, it was naturally expanded to not only the software area but also the FPGA logic.

Implementation of a Shared Buffer ATM Switch Embedded Scalable Pipelined Buffer Memory (가변형 파이프라인방식 메모리를 내장한 공유버퍼 ATM 스위치의 구현)

  • 정갑중
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.703-717
    • /
    • 2002
  • This paper illustrates the implementation of a scalable shared buffer asynchronous transfer mode (ATM) switch. The designed shared buffer ATM switch has a shared buffet of a pipelined memory which has the access time of 4 ns. The high-speed buffer access time supports a possibility of the implementation of a shared buffer ATM switch which has a large switching capacity. The designed switch architecture provides flexible switching performance and port size scalability with the independence of queue address control from buffer memory control. The switch size and the buffer size of the designed ATM switch can be reconfigured without serious circuit redesign. The designed prototype chip has a shared buffer of 128-cell and 4 ${\times}$ 4 switch size. It is integrated in 0.6um, double-metal, and single-poly CMOS technology. It has 80MHz operating frequency and supports 640Mbps per port.

Optical Properties Analysis of SiNx Double Layer Anti Reflection Coating by PECVD

  • Gong, Dae-Yeong;Park, Seung-Man;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.149-149
    • /
    • 2010
  • The double-layer antireflection (DLAR) coatings have significant advantages over single-layer antireflection (SLAR) coatings. This is because they will be able to cover a broad range of the solar spectrum which would enhance the overall performance of solar cells. Moreover films deposited at high frequency are expected to show excellent and UV-stable passivation in the refractive index that we adopted. In this work, we present a novel DLAR coating using SiNx:H thin films with refractive indices 1.9 and 2.3 as the top and bottom layers. This approach is cost effective when compared to earlier DLAR coatings with two different materials. SiNx:H films were deposited by Plasma enhanced chemical vapor deposition (PECVD) technique using $SiH_4$, $NH_3$ and $N_2$ gases with flow rates 20~80sccm, 200sccm and 85 sccm respectively. The RF power, plasma frequency and substrate temperature for the deposition were 300W, 13.56 MHz and $450^{\circ}C$, respectively. The optimum thickness and refractive indices values for DLAR coatings were estimated theoretically using Macleod simulation software as 82.24 nm for 1.9 and 68.58 nm for 2.3 respectively. Solar cells were fabricated with SLAR and DLAR coatings of SiNx:H films and compared the cell efficacy. SiNx:H> films deposited at a substrate temperature of $450^{\circ}C$ and that at 300 W power showed best effective minority carrier lifetime around $50.8\;{\mu}s$. Average reflectance values of SLAR coatings with refractive indices 1.9, 2.05 and 2.3 were 10.1%, 9.66% and 9.33% respectively. In contrast, optimized DLAR coating showed a reflectance value as low as 8.98% in the wavelength range 300nm - 1100nm.

  • PDF

Improved structures of stainless steel current collector increase power generation of microbial fuel cells by decreasing cathodic charge transfer impedance

  • Nam, Taehui;Son, Sunghoon;Kim, Eojn;Tran, Huong Viet Hoa;Koo, Bonyoung;Chai, Hyungwon;Kim, Junhyuk;Pandit, Soumya;Gurung, Anup;Oh, Sang-Eun;Kim, Eun Jung;Choi, Yonghoon;Jung, Sokhee P.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Microbial fuel cell (MFC) is an innovative environmental and energy system that converts organic wastewater into electrical energy. For practical implementation of MFC as a wastewater treatment process, a number of limitations need to be overcome. Improving cathodic performance is one of major challenges, and introduction of a current collector can be an easy and practical solution. In this study, three types of current collectors made of stainless steel (SS) were tested in a single-chamber cubic MFC. The three current collectors had different contact areas to the cathode (P $1.0cm^2$; PC $4.3cm^2$; PM $6.5cm^2$) and increasing the contacting area enhanced the power and current generations and coulombic and energy recoveries by mainly decreasing cathodic charge transfer impedance. Application of the SS mesh to the cathode (PM) improved maximum power density, optimum current density and maximum current density by 8.8%, 3.6% and 6.7%, respectively, comparing with P of no SS mesh. The SS mesh decreased cathodic polarization resistance by up to 16%, and cathodic charge transfer impedance by up to 39%, possibly because the SS mesh enhanced electron transport and oxygen reduction reaction. However, application of the SS mesh had little effect on ohmic impedance.