Browse > Article
http://dx.doi.org/10.4191/kcers.2014.51.4.265

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs  

Choi, Sihyuk (Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST))
Kim, Guntae (Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Abstract
Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.
Keywords
Solid oxide fuel cell; Cathode; Ruddlesden-Popper; Tri-blockcopolymer (F127);
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Park, S. Choi, J. Shin, and G. Kim, "Electrochemical Investigation of Strontium Doping Effect on High Performance $Pr1-xSr_xCoO_{3-{\delta}}$(x = 0.1, 0.3. 0.5, and 0.7) Cathode for Intermediate-temperature Solid Oxide Fuel Cells," J. Power Sources, 210 172-77 (2012).   DOI   ScienceOn
2 B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 345-52 (2001).   DOI   ScienceOn
3 S. Park, J. M. Vohs, and R. J. Gorte, "Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell," Nature, 404 265-67 (2000).   DOI   ScienceOn
4 M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. Choi, "Rational SOFC Material Design: New Advances and Tools," Mater. Today, 14 [11] 534-46 (2011).   DOI   ScienceOn
5 Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, "A Thermally Self-sustained Micro Solid-oxide Fuel-cell Stack with High Power Density," Nature, 435 795-98 (2005).   DOI   ScienceOn
6 Z. Shao and S. M. Haile, "A High-performance Cathode for the Next Generation of Solid Oxide Fuel Cells," Nature, 431 170-73 (2004).   DOI   ScienceOn
7 S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 2426 (2013).   DOI
8 Z. Zhang and M. Greenblatt, "Synthesis, Structure, and Properties of $Ln_4Ni_3O_{10-{\delta}}$ (Ln = La, Pr, and Nd)," J. Solid State Chem., 117 [2] 236-46 (1995).   DOI   ScienceOn
9 V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko, E. N. Naumovich, and J. R. Frade, "Chemically Induced Expansion of $La_{2-}NiO_{4+{\delta}}$-based Materials," Chem. Mater.,19 2027-33 (2007).   DOI   ScienceOn
10 J. A. Kilner and C. K. M. Shaw, "Mass Transport in $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ Oxides with the $K_2NiF_4$ Structure," Solid State Ionics, 154 523-27 (2002).
11 G. Amow, I. J. Davidson, and S. J. Skinner, "A Comparative Study of the Ruddlesden-Popper Series, $La_{n+1}Ni_nO_{3n+1}$ (n = 1, 2, and 3), for Solid-oxide Fuel-cell Cathode Applications," Solid State Ionics, 177 [13-14] 1205-10 (2006).   DOI   ScienceOn
12 V. V. Kharton, A. A. Yaremchenko, and E. N. Naumovich, "Research on the Electrochemistry of Oxygen Ion Conductors in the Former Soviet Union. II. Perovskite-related Oxides," J. Solid State Electrochem., 3 [6] 303-26 (1999).   DOI   ScienceOn
13 S. Choi, S. Yoo, J. Y. Shin, and G. Kim, "High Performance SOFC Cathode Prepared by Infiltrationof $La_{n+1}Ni_nO_{3n+1}$(n = 1, 2, and 3) in Porous YSZ," J. Electrochem. Soc.,158 [8] B995-99 (2011).   DOI   ScienceOn
14 J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. Bae, "Electrochemical Investigation of Sm$Ba_{0.5}Sr_{0.5}Co_2O_{5+d}$ Composite Cathodes with Cathodes for Intermediate Temperatureoperating Solid Oxide Fuel Cells," Chem. Mater., 22 883-92 (2010).   DOI   ScienceOn
15 G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, and C. A. Mims, "Rapid Oxygen Ion Diffusion and Surface Exchange Kinetics in $PrBaCo_2O_{5+x}$ with a Perovskiterelated Structure and Ordered a Cations," J. Mater. Chem.,17 2500-05 (2007).   DOI   ScienceOn
16 V. V. Kharton, A. P. Viskup, E. N. Naumovich, and F. M. B. Marques, "Oxygen Ion Transport in $La_2NiO_4$-based Ceramics," J. Mater.Chem., 9 [10] 2623-29 (1999).   DOI   ScienceOn
17 S. Park, S. Choi, J. Shin, and G. Kim, "A Collaborative Study of Sintering and Composite Effects for a $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}$ IT-SOFC Cathode," RSC Adv., 4 1775-81 (2014).   DOI
18 A. Jun, J. Shin, and G. Kim, "High Redox and Performance Stability of Layered $SmBa_{0.5}Sr_{0.5}Co_{1.5}Cu_{0.5}O_{5+{\delta}}$ Perovskite Cathodes for Intermediate-temperature Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys.,15 [45] 19906-12 (2013).   DOI   ScienceOn
19 S. Park, S. Choi, J. Shin, and G. Kim, "Tradeoff Optimization of Electrochemical Performance and Thermal Expansion for Co-based Cathode Material for Intermediatetemperature Solid Oxide Fuel Cells," Electrochim. Acta, 125 683-90 (2014).   DOI   ScienceOn
20 E. Boehm, J. M. Bassat, M. C Steil, P. Dordoe, F. Mauvy, and J. C. Grenier, "Oxygen Transport Properties of $La_2Ni_{1-x}Cu_xO_{4+{\delta}}$ Mixed Conducting Oxides," Solid State Sci., 5 [7] 973-81 (2003).   DOI   ScienceOn
21 E. P. Murray and S. A. Barnett, "$(La,Sr)MnO_3-(Ce,Gd)O_{2-x}$ Composite Cathodes for Solid Oxide Fuel Cells," Solid State Ionics,143 [3-4] 265-73 (2001).   DOI   ScienceOn
22 S. B. Adler, X. Y. Chen, and J. R. Wilson, "Mechanisms and Rate Laws for Oxygen Exchange on Mixed-conducting Oxide Surfaces," J. Catal.,245 [1] 91-109 (2007).   DOI   ScienceOn
23 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized Syntheses of Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks," Nature, 396 152-55 (1998).   DOI
24 S. Choi, J. Shin, K. M. Ok, and G. Kim, "Chemical Compatibility, Redox Behavior, and Electrochemical Performance of Nd_{1-x}Sr_{x}CoO3-${\delta}$ Cathodes Based on $Ce_{1.9}Gd_{0.1}O_{1.95}$ for Intermediate-temperature Solid Oxide Fuel Cells," Electrochim. Acta., 81 217-23 (2012).   DOI   ScienceOn
25 C. Rossignol, J. M. Ralph, J. M. Bae, and J. T. Vaughey, "$Ln_{1-x}Sr_xCoO_3$ (Ln=Gd, Pr) as a Cathode for Intermediatetemperature Solid Oxide Fuel Cells," Solid State Ionics, 175 [1-4] 59-61 (2004).   DOI   ScienceOn