• Title/Summary/Keyword: Single bond

Search Result 467, Processing Time 0.033 seconds

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

DEPOSITION OF c-BN FILMS BY PULSED DC BIASING IN MAGNETICALLY ENHANCED ARE METHOD

  • Lee, S.H.;Byon, E.S.;Lee, K.H.;J., Tian;Yoon, J.H.;Sung, C.;Lee, S.R.
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.467-471
    • /
    • 1999
  • BN films were grown on silicon (l00) substrate by magnetically enhanced activated reactive evaporation (ME-ARE) with pulsed DC power instead of r.f. for substrate biasing. The deposited films were analyzed using Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). FTIR results show that the intensity of absorption band of $sp^2$ bond of BN decreased and that of $sp^3$ bond of c-BN increased with increasing pulsed DC bias voltage applied to substrate. The initially grown layer at the interface was observed by TEM and considered to be of$ sp^2$-bonded BN. The cross-sectional and planar TEM micrographs show that the upper layer on the initial layer was the single phase c-BN. It is concluded that cubic boron nitride films could be synthesized by ME-ARE process with pulsed DC biasing.

  • PDF

The Crystal and Molecular Structure of Thiamphenicol

  • Shin, Whan-chul;Kim, Sang-soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.79-83
    • /
    • 1983
  • The structure of thiamphenicol, one of the congeners of chloramphenicol which is a well-known antibiotic, has been determined by single crystal x-ray diffraction techniques. The crystal structure was determined using diffractometer data obtained by the $2{\theta}:{\omega}$ scan technique with $MoK{\alpha}$ radiation from a crystal having space group symmetry $P2_{1}2_{1}2_{1}$, and unit cell parameters a = 5.779, b = 15.292 and c = 17.322 ${\AA}$ . The structure was solved by direct methods and refined by least squares to an R = 0.070 for the 2116 reflections. The overall V-shaped conformation of thiamphenicol revealed in this study is consistent with those from the crystallographic studies and the proposed models from the theoretical and nmr studies of chloramphenicol. However there is no intramolecular hydrogen bond and the propanediol moiety is fully extended in the thiamphenicol molecule, while the crystal structures of chloramphenicol show the existence of the hydrogen bond between the two hydroxyl groups of the propanediol moiety forming an acyclic ring. All of the thiamphenicol molecules in the crystal are linked by a threedimensional hydrogen bonding network.

BUMPLESS FLIP CHIP PACKAGE FOR COST/PERFORMANCE DRIVEN DEVICES

  • Lin, Charles W.C.;Chiang, Sam C.L.;Yang, T.K.Andrew
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.219-225
    • /
    • 2002
  • This paper presents a novel "bumpless flip chip package"for cost! performance driven devices. Using the conventional electroplating and etching processes, this package enables the production of fine pitch BGA up to 256 I/O with single layer routing. An array of circuitry down to $25-50{\mu}{\textrm}{m}$ line/space is fabricated to fan-in and fan-out of the bond pads without using bumps or substrate. Various types of joint methods can be applied to connect the fine trace and the bond pad directly. The resin-filled terminal provides excellent compliancy between package and the assembled board. More interestingly, the thin film routing is similar to wafer level packaging whereas the fan-out feature enables high lead count devices to be accommodated in the BGA format. Details of the design concepts and processing technology for this novel package are discussed. Trade offs to meet various cost or performance goals for selected applications are suggested. Finally, the importance of design integration early in the technology development cycle with die-level and system-level design teams is highlighted as critical to an optimal design for performance and cost.

  • PDF

Synthesis and structure analysis of the bis(dicyclohexylammonium) chromate dihydrate complex, [(C6H11)2NH2]2[CrO4]·2H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.448-451
    • /
    • 2007
  • A new bis(dicyclohexylammonium) chromate dihydrate complex, $[(C_6H_{11})_2NH_2]_2[CrO_4]{\cdot}2H_2O$, (I), has been synthesized and its structure analyzed by FT-IR, EDS, elemental analysis, ICP-AES, and single crystal X-ray diffraction methods. The Cr(VI) complex (I) is tetragonal system, I${\bar{4}}$2d space group with a = 12.5196(1), b = 12.5196(1), c = $17.3796(3){\AA}$, a = ${\beta}$ = ${\gamma}$ = $90^{\circ}$, V = $2724.09(6){\AA}^3$, Z = 4. The crystal structure of complex (I) consists of tetrahedral chromate $[CrO_4]^{2-}$ anion, two organic dicyclohexylammonium $[(C_6H_{11})_2NH_2]^+$ cations and two lattice water molecules. The chromate anion and protonated dicyclohexylammonium cation is mainly constructed through the ionic bond. The cyclohexylammonium rings of the dicyclohexylammonium cation take the chair form and vertical configuration with each other. The N-H${\cdot}$O and O-H${\cdot}$O hydrogen bond networks between the $N_{dicyclohexylammonium}$, $O_{water}$ and $O_{chromate}$ atom lead to self-assembled molecular conformation and stabilize the crystal structure.

Crystal Structure Analysis of 6-Ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile

  • Malathy, P.;Sharmila, P.;Srinivasan, J.;Manickam, Bakthadoss;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.2
    • /
    • pp.94-102
    • /
    • 2016
  • The crystal structure of the potential active 6-ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile ($C_{19}H_{15}N_2O_3$) has been determined from single crystal X-ray diffraction technique. The title compound crystallizes in the monoclinic space group C2/c with unit cell dimension a= 29.3026(9) ${\AA}$, b= 6.7695(2) ${\AA}$ and c= 19.7597(6) ${\AA}$ [${\alpha}= 90^{\circ}$, ${\beta}= 125.709(10)^{\circ}$ and ${\gamma}= 90^{\circ}$]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation method, the isoxazole and six membered pyran rings adopts envelope conformation. The crystal packing of the molecules is stabilized by the weak $C-H{\ldots}N$ hydrogen bond interaction.

Atomistic simulation of structural and elastic modulus of ZnO nanowires and nanotubes (산화아연 나노선과 나노튜브의 구조 및 탄성계수에 관한 원자단위 연구)

  • Moon, W.H.;Choi, C.H.;Hwang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.429-429
    • /
    • 2008
  • The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.

  • PDF

APPLICATION OF ACIDIC PRIMER FOR ORTHODONTIC ADHESIVE SYSTEM (Acidic primer를 이용한 교정용 브라켓 접착의 전단결합강도)

  • Kim, Jin-Hee;Jin, Hun-Hee;Oh, Jang-Kyun
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.137-147
    • /
    • 2001
  • Acidic primer is the bonding agent which combines the conditioning and priming agent into the single solution and was originally developed for the dentin bonding system. It is less harmful to the tooth structure and more convenient to manipulate than the traditional etching procedure. The Purpose of this study is to evaluate the shear bond strength of various bonding materials when the enamel is treated with acidic primer for the bracket bonding procedure. Fifty recently extracted human premolars were randomly separated into five groups -Group I using Clearfil Liner Bond 2 adhesive system to the enamel treated with acidic primer, Group II using Transbond XT adhesive system to the enamel treated with acidic primer, Group III using panavia 21 adhesive system to the enamel treated with acidic primer, Group IV using Fuji-Ortho LC adhesive system to the enamel treated with acidic primer, Group V using Transbond XT adhesive system to the enamel treated with 37$\%$ phosphoric acid. The shear bond strength was measured with Instron universal testing machine after storing in $37^{\circ}C$ water bath for 48 hours. After debonding, the teeth and brackets were examined under scanning electron microscope (SEM) and assessed with the adhesive remnant index (ARI). The results were as follows : 1. There were no significant differences in shear bond strength between group III ($8.69{\pm}2.72MPa$), group IV (9.7 ± 3.16 MPa), and group V ($10.48{\pm}2.60MPa$) (p>0.05). 2. The shear bond strength of group III and group IV was significantly higher than that of group I ($1.09{\pm}0.53MPa$), and Group II ($2.70{\pm}1.46MPa$) (p<0.05). 3. The ARI of group IV ($2.1{\pm}1.1$) and group V ($2.9{\pm}0.3$) was significantly higher than that of group I ($0.2{\pm}0.4$), group II ($0.3{\pm}0.9$) and group III ($0.2{\pm}0.4$) (p<0.05). 4. There were no significant difference between the ARI of group IV and group V (p>0.05). This result suggests that the combination of acidic primer and some bonding adhesive can provide sufficient shear bond strength for clinical orthodontics.

  • PDF

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF

The effect of cleaning methods on bond strength of zirconia after saliva contamination (타액으로 오염된 지르코니아 수복물의 접착강도에 세척 방법들이 미치는 영향)

  • Shim, Young-Bo;Choi, An-Na;Son, Sung-Ae;Jung, Kyoung-Hwa;Kwon, Yong Hoon;Park, Jeong-Kil
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • This study evaluated the effects of various cleaning methods on the shear bond strength of zirconia ceramics after saliva contamination. Eighty zirconia disk specimens were divided into 8 groups. All groups were treated with one coat of MDP primer. All specimens (except the negative control) were contaminated with human saliva on the zirconia surface. The positive control went through the bonding procedure immediately after contamination without any cleaning procedure. With the exception of control groups, the remaining six groups were rinsed with water and either applied with MDP recoating (WATER+MDP) or without MDP recoating (WATER). While some were cleaned with a Ivoclean with MDP recoating (IVOCLEAN+MDP) or not applied with MDP recoating(IVOCLEAN), others were cleaned with a 1% NaOCl solution with MDP recoating (NaOCl+MDP) or without MDP recoating (NaOCl). The shear bond strength of all specimens were measured after being stored in distilled water at $37^{\circ}C$ for 24 hours. The data was analyzed statistically by an analysis of ANOVA, Tukey's post hoc test and Student's t-test was used to compare the shear bond strength according to the re-coating of MDP after the cleaning procedure. The positive control group showed the lowest shear bond strength value, and the WATER group and NaOCl group showed no significant difference when compared to the positive control group. The IVOCLEAN group showed significantly higher shear bond strength when compared to Water group and NaOCl group but not with the group of negative control. After rinsing with water or the NaOCl solution, the comparison of the single coating of MDP and re-coating of MDP showed different shear bond strengths but there was no significant difference to the negative control. After rinsing with Ivoclean, there was no significant difference to the negative control regardless of the recoating of MDP. In conclusion, the shear bond strength was affected by the cleansing procedure and Ivoclean was found to be effective regardless of the re-coating of MDP. When water or the NaOCl solution is used to remove surface contaminants, the re-coating of MDP provides a positive effect on cementation.