• Title/Summary/Keyword: Single antenna

Search Result 583, Processing Time 0.034 seconds

High Gain Metamaterial Patch Antenna for 2.4GHz Band using New Metamaterial Single-Layer (새로운 메타물질 Single-Layer를 이용한 2.4GHz 대역을 위한 고 이득 메타물질 패치 안테나)

  • Park, Kwan-Young;Yang, Seung-In
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.56-61
    • /
    • 2013
  • In this paper, a high gain patch antenna using a single layer metamaterial superstrate with a near-to-zero refractive index (n) is proposed. Simulations for an ordinary patch antenna and our proposed metamaterial patch antenna were conducted. Our proposed metamaterial patch antenna was implemented and measured. The gain of our proposed metamaterial patch antenna is 6.77dB higher than that of an ordinary patch antenna.

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

Fault Detection and Isolation for Inertial Sensor Using Single Antenna GPS Receiver (단일 안테나 GPS 수신기를 이용한 관성센서의 고장검출 및 분리)

  • 김영진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1037-1043
    • /
    • 2004
  • In this paper, a new fault detection and isolation algorithm fur inertial sensor system is proposed. To identify the inertial sensor fault, single antenna GPS receiver is used as an effective redundancy source. To use GPS receiver as redundancy for the inertial sensors, the algorithm to estimate the attitude and acceleration using single antenna GPS receiver is adopted. By using Doppler shift of carrier phase signal and kinetic characteristics of aircraft, attitude information of aircraft can be obtained at the coordinated flight condition. Based on this idea, fault diagnosis algorithm for inertial sensors using single antenna GPS based attitude is proposed. For more effective FDI, decision variables considering the aircraft maneuver are proposed. The effectiveness of the proposed algorithm is verified through the numerical simulations.

Main-Lobe Recognition for Sum-Delta Monopulse of Single-Ring Circular Array Antenna (단원형배열안테나의 합차 모노펄스 주엽 식별)

  • Hyeongyu Park;Daewoong Woo;Jaesik Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2023
  • The target must be located within the main-lobe of the antenna in order to measure the direction of the target by using sum-delta monopulse technique. The most common way if the target is located within the main-lobe is to compare the amplitude of the sum channel received signal with the delta channel received signal. However, in the case of the single-ring circular array antenna, it is difficult to apply the conventional method due to its structural limitation where antenna elements do not exist in the center of the array. In this paper, we proposed a novel method to identify whether a target is located within the main-lobe by appropriately adjusting the feeding amplitude of each element constituting the single-ring circular array antenna through the particle swarm optimization method. Simulation results showed that the proposed method can determine whether the target is located within the main-lobe of the single-ring circular array antenna.

Implementation of a Smart Antenna Base Station for mobile-WiMAX (Mobile-WiMAX를 위한 스마트 안테나 기지국 구현)

  • Lee, Chang-Hoon;Choi, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • In this paper, the mobile-WiMAX (m-WiMAX) using the Smart antenna technique is implemented. Experiments are performed to compare Smart antenna system with conventional single antenna system. To implement the m-WiMAX smart antenna system there are many considerations, key issues of which are symbol time acquisition, beamforming, calibration. In the paper, symbol time acquisition, beamforming, calibration are implemented in WiMAX Smart antenna system and we verified that Smart antenna system is superior to single antenna system. The experimental results show 5.5 dB performance enhancement of implemented Smart antenna system in throughput compared with a single antenna system. The experimental result is almost same as theoretical result of 6 dB.

λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.536-548
    • /
    • 2019
  • In this study, an electronically steerable parasitic array radiator (ESPAR) antenna via analog radio frequency (RF) switches for a single RF chain MIMO system is presented. The proposed antenna elements are spaced at ${\lambda}/64$, and the antenna size is miniaturized via a dielectric radome. The optimum reactance load value is calculated via the beamforming load search algorithm. A switch simplifies the design and implementation of the reactance loads and does not require additional complex antenna matching circuits. The measured impedance bandwidth of the proposed ESPAR antenna is 1,500 MHz (1.75 GHz-3.25 GHz). The proposed antenna exhibits a beam pattern that is reconfigurable at 2.48 GHz due to changes in the reactance value, and the measured peak antenna gain is 4.8 dBi. The reception performance is measured by using a $4{\times}4$ BPSK signal. The measured average SNR is 17 dB when using the proposed ESPAR antenna as a transmitter, and the average SNR is 16.7 dB when using a four-conventional monopole antenna.

A Design of Wideband Printed Dual Meandered Slot Antenna (인쇄회로형 광대역 이중 미앤더드 슬롯 안테나 설계)

  • 이윤경;임계재;이재용;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • This paper designed a compact printed meandered scot antenna which to integrate in wireless LAN and proposed a printed dual meandered slot antenna for improving bandwidth. A printed dual meandered slot antenna is calculated by using the mehtod of FDTD. The calculated results showed good agreement with the measured results. As a result of measurement, the bandwidth(VSWR< 2) of single meandered slot antenna is 115 MHz and the bandwidth of dual meandered slot antenna is 164 MHz. The dual meandered slot antenna bandwidth has been improves to that of 43% comparing to single meandered slot antenna.

ANGLES ONLY ORBIT DETERMINATION FROM SINGLE TRACKING STATION

  • Lee Byoung-Sun;Hwang Yoola
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.304-307
    • /
    • 2004
  • Satellite orbit determination using angles only data from single ground station is carried out. The KOMPSAT-1 satellite mono-pulse angle tracking data from 9-meter S-band antenna at KARI site in Daejeon are used for the orbit determination. Various angle tracking arcs from one-day to five-day are processed and the orbit determination results are analyzed. Antenna pointing data are predicted based on the orbit determination results to check the possibility of re-acquisition and tracking of the satellite signal. Normal satellite mission operations including orbit determination, antenna prediction, satellite re-acquisition and automatic tracking from predicted antenna angle pointing data are concluded to be possible when three-day angle tracking data from single tracking station are used for the orbit determination.

  • PDF

Analysis of Single-RF MIMO Receiver with Beam-Switching Antenna

  • Gwak, Donghyuk;Sohn, Illsoo;Lee, Seung Hwan
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.647-656
    • /
    • 2015
  • This paper proposes a single-RF MIMO receiver that adopts a beam-switching antenna (BSA) instead of a conventional array antenna. The beauty of the proposed single-RF MIMO receiver with BSA is that it can be deployed in a very small physical space while achieving a full spatial multiplexing gain. Our analysis has revealed that the use of a BSA inevitably results in the spectrum spreading effect at the RF output, which in turn causes an SNR decrease and adjacent channel interference (ACI). Two novel receiver techniques are proposed to mitigate the issues of redundant sub-band suppression and ACI avoidance. Numerical analysis results verify the performance improvement from the proposed receiver techniques.

Design of Circularly Polarized Array Antenna for 5.8GHz Microwave Wireless Power Transmission (5.8GHz 마이크로파 무선전력전송을 위한 원형 편파 배열 안테나 설계)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 2018
  • In this paper, we have designed circularly polarized array antenna for 5.8GHz microwave wireless power transmission. To obtain high antenna gain, we studied a single patch antenna, a $2{\times}1$ array antenna, a $2{\times}2$ array antenna, a $2{\times}4$ array antenna, and a $4{\times}4$ array antenna. Commonly, characteristics of each antenna have a frequency of 5.8 GHz and Right Hand Circular Polarization(RHCP) of circular polarization. Also, the results were obtained with the design to each antenna that the return loss was less than -10dB and the axial ratio was less than 3dB. The gain of the antennas was 6.08dBi for a single patch antenna, 9.69dBi for a $2{\times}1$ array antenna, 12.99dBi for a $2{\times}2$ array antenna, 15.72dBi for a $2{\times}4$ array antenna and 18.39dBi for a $4{\times}4$ array antenna. When the elements of the array antenna were increased, it was confirmed that it increased by about 3dBi.