Implementation of a Smart Antenna Base Station for mobile-WiMAX

Mobile-WiMAX를 위한 스마트 안테나 기지국 구현

  • Published : 2010.01.25

Abstract

In this paper, the mobile-WiMAX (m-WiMAX) using the Smart antenna technique is implemented. Experiments are performed to compare Smart antenna system with conventional single antenna system. To implement the m-WiMAX smart antenna system there are many considerations, key issues of which are symbol time acquisition, beamforming, calibration. In the paper, symbol time acquisition, beamforming, calibration are implemented in WiMAX Smart antenna system and we verified that Smart antenna system is superior to single antenna system. The experimental results show 5.5 dB performance enhancement of implemented Smart antenna system in throughput compared with a single antenna system. The experimental result is almost same as theoretical result of 6 dB.

본 논문에서는 스마트 안테나 기능을 지원하는 mobile-WiMAX 시스템을 구현하였고, 기존의 단일 안테나 m-WiMAX 시스템과 성능을 비교하는 실험을 하였다 스마트 안테나 기능을 지원하는 m-WiMAX 시스템을 구현하기 위해 여러 고려 사항이 있다. 그 중에 스마트 안테나 방식의 특성상 심볼 동기 획득, 빔형성, 캘리브래이션을 특히 잘 구현 해야만 원하는 성능의 스마트 안테나 기지국을 구현할 수 있다. 본 논문에서는 위의 3가지를 구현하였고 3가지가 제대로 구현되었을 때 스마트 안테나 시스템이 단일 안테나 시스템보다 성능이 우수하다는 것을 검증하였다. 4 배열 안테나의 환경에서 스마트 안테나 시스템은 데이터 산출량 관점에서 단일안테나 시스템보다 5.5dB의 성능향상을 실험을 통해 확인할 수 있었고 이는 이론적인 수치인 6dB와 거의 일치하는 결과 이다.

Keywords

References

  1. WiMAX Forum, "Mobile WiMAX – Part I: A Technical Overview and Performance Evaluation," www.wimaxforum.org.
  2. Ye (Geoffrey) Li and Nelson R. Sollenberger, "Adaptive Antenna Arrays for OFDM Systems With Cochannel Interference," IEEE Transactions on Communications, vol. 47, no. 2, pp. 217-229, Feb. 1999. https://doi.org/10.1109/26.752127
  3. Yung-Fang Chen and Chih-Peng Li, "Adaptive Beamforming Schemes for Interference Cancellation in OFDM Communication Systems," IEEE Vehicular Technology Conference 2004, vol. 1, pp. 103-107, May 2004.
  4. S. Choi and D. Shim, "A Novel Adaptive Beamforming Algorithm for a Smart Antenna System in a CDMA Mobile Communication Environment," IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1793-1805, Sept. 2000. https://doi.org/10.1109/25.892584
  5. J. J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation of Timing and Frequency Offset in OFDM Systems," IEEE Trans. Signal Processing, vol. 45, pp. 1800-1805, July 1997. https://doi.org/10.1109/78.599949
  6. Xiaoyu Fu and Hlaing Minn, "Initial Uplink Synchronization and Power Control (Ranging Process) for OFDMA Systems," IEEE Communications Society, Globecom 2004.
  7. M. Wennstrom, T. Oberg, and A. Rydberg, "Effects of Finite Weight Resolution and Calibration Errors on the Performance of Adaptive Array Antennas," IEEE Transactions on Aerospace and Electronic Systems, vol. 37, issue 2, pp. 549-562, Apr. 2001. https://doi.org/10.1109/7.937468
  8. J. Litva and T. K. Lo, Digital Beamforming in Wireless Communications, Artech House, 1996.
  9. S. Mano and T. Katagi, "A Method of Measuring Amplitude and Phase of Each Radiating Element of a Phased Array Antenna," J. IEICE Japan, vol. J65-B, no. 5, pp. 555-560, May 1982.
  10. K. Nishimori, K. Cho, et al., "Automatic Calibration Method for Adaptive Array for FDD Systems," in Proc. AP-S Dig., vol. 2, pp. 910-913, 2000.
  11. S Hyeon, Y Yun, and S Choi "Novel Automatic Calibration Technique for Smart Antenna Systems," Digital Signal Processing, 2007 – Elsevier.
  12. H. Steendam and M. Moeneclaey, "Analysis and Optimization of the Performance of OFDM on Frequency-Selective Time-Selective Fading Channels," IEEE Transaction on Communication, vol. 47, issue 12, pp. 1811-1819, Dec. 1999. https://doi.org/10.1109/26.809701