Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0374

λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system  

Lee, Jung-Nam (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Lee, Yong-Ho (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Lee, Kwang-Chun (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Tae Joong (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.41, no.4, 2019 , pp. 536-548 More about this Journal
Abstract
In this study, an electronically steerable parasitic array radiator (ESPAR) antenna via analog radio frequency (RF) switches for a single RF chain MIMO system is presented. The proposed antenna elements are spaced at ${\lambda}/64$, and the antenna size is miniaturized via a dielectric radome. The optimum reactance load value is calculated via the beamforming load search algorithm. A switch simplifies the design and implementation of the reactance loads and does not require additional complex antenna matching circuits. The measured impedance bandwidth of the proposed ESPAR antenna is 1,500 MHz (1.75 GHz-3.25 GHz). The proposed antenna exhibits a beam pattern that is reconfigurable at 2.48 GHz due to changes in the reactance value, and the measured peak antenna gain is 4.8 dBi. The reception performance is measured by using a $4{\times}4$ BPSK signal. The measured average SNR is 17 dB when using the proposed ESPAR antenna as a transmitter, and the average SNR is 16.7 dB when using a four-conventional monopole antenna.
Keywords
analog RF switch; beam-space MIMO; ESPAR antenna; reactance load; single RF chain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 V. I. Barousis, A. G. Kanatas, and A. Kalis, Beamspace‐domain analysis of single‐RF front‐end MIMO system, IEEE Trans. Veh. Technol. 60 (2011), no. 3, 1195-1199.   DOI
2 D. H. Gwak, I. S. Sohn, and S. H. Lee, Analysis of single‐RF MIMO receiver with beam‐switching antenna, ETRI J. 37 (2015), no. 4, 647-656.   DOI
3 M. Mohaisen and S. Lee, Complex quadrature spatial modulation, ETRI J. 39 (2017), no. 4, 514-524.   DOI
4 A. Kalis, A. G. Kanatas, and C. B. Ppapdias, A novel approach to MIMO transmission using a single RF front end, IEEE J. Selected Areas Commun. 26 (2008), no. 6, 972-980.   DOI
5 B. Han et al., A single RF MIMO loading network for high‐order modulation schemes, Int. J. Antennas Propag. 2014 (2014),1-10.
6 C. Masouros and L. Hanzo, Constellation randomization achieves transmit diversity for single‐RF spatial modulation, IEEE Trans. Vehicular Technol. 65 (2016), no. 10, 8101-8111.   DOI
7 S. Narayanan, H. Ahmadi, and M. F. Flanagan, Simultaneous uplink/downlink transmission using full‐duplex single‐RF MIMO, IEEE Wireless Commun. Lett. 5 (2016), no. 1, 88-91.   DOI
8 J. H. Oh et al., A single RF‐chain load modulation transmitter of simple structure for massive MIMO, in Proc. Int. Conf. Inform. Commun. Technol. Convergence, Jeju, Rep. of Korea, Oct.2017, pp. 955-957.
9 G. D. Jo et al., Single radio transmission and reception for spatial multiplexing MIMO, in Proc. IEEE Vehicular Technol. Conf., Montreal, Canada, Mar.2017, pp.1-5.
10 Y.‐K. Cho et al., ${\lambda}/16$ spaced single RF chain MIMO antenna using low‐power CMOS switches, in Proc. Eur. Microwave Conf., Paris, France, Dec. 2015, pp. 726-729.
11 P. K. Pal and R. S. Sherratt, MIMO channel capacity and configuration selection for switched parasitic antennas, ETRI J. 40 (2018), no. 2, 197-206.   DOI
12 M. A. Sedaghat et al., Load modulated arrays: a low‐complexity antenna, IEEE Commun. Mag. 54 (2016), no. 3, 46-52.   DOI
13 O. N. Alrabadi, J. P. Carrier, and A. Kalis, MIMO transmission using a single RF source: theory and antenna design, IEEE Trans. Antennas Propag. 60 (2012), no. 2, 654-664.   DOI
14 M. Yousefbeiki and J. P. Carrier, Towards compact and frequency‐tunable antenna solutions for MIMO transmission with a single RF chain, IEEE Trans. Antennas Propag. 62 (2014), no. 3, 1065-1073.   DOI
15 V. Barousis and A. G. Kanatas, Aerial degrees of freedom of parasitic arrays for single RF front‐end MIMO transceivers, Progress Electromagn. Research B 35 (2011), 287-2011.   DOI
16 H. Kawakami and T. Ohira, Electrically steerable passive array radiator (ESPAR) antennas, IEEE Antennas Propag. Mag. 47 (2005), no. 2, 43-50.   DOI
17 J. J. Luther, S. Ebadi, and X. Gong, A microstrip patch electronically steerable parasitic array radiator (ESPAR) antenna with reactance‐tuned coupling and maintained resonance, IEEE Trans. Antennas Propag. 60 (2012), no. 4, 1803-1813.   DOI
18 R. Schlub, J. Lu and T. Ohira, Seven‐element ground skirt monopole ESPAR antenna design from a genetic algorithm and the finite element method, IEEE Trans. Antennas Propag. 51 (2003), no. 11, 3033-3039.   DOI
19 J. Lu, D. Ireland, and R. Schlub, Dielectric embedded ESPAR (DE‐ESPAR) antenna array for wireless communications, IEEE Trans. Antennas Propag. 53 (2005), no. 8, 2437-2443.   DOI
20 J. Cheng, Y. Kamiya, and T. Ohira, Adaptive beamforming of ESPAR antenna based on steepest gradient algorithm, IEICE Trans. Commun. E84‐B (2001), no. 7, 1790-1800.
21 C. Sun et al., Fast beamforming of electronically steerable parasitic array radiator antenna: theory and experiment, IEEE Trans. Antennas Propag. 52 (2004), no. 7, 1819-1832.   DOI
22 G. D. Jo et al.,Demodulation of 4X4 MIMO signal using single RF, in Proc. 18th Int. Conf. Adv. Commun. Technol., Pyeongchang, Rep. of Korea, Feb. 2016, pp. 390-393.
23 H.‐T. Liu, S. Gao, and T.‐H. Loh, Electrically small and low cost smart antenna for wireless communication, IEEE Trans. Antennas Propag. 60 (2012), no. 3, 1540-1549.   DOI
24 M. Yousefbeiki et al,Efficient MIMO transmission of PSK signals with a single‐radio reconfigurable antenna, IEEE Trans. Commun. 62 (2014), no. 2, 567-577.   DOI
25 ADG918 Datasheet and Product Info, http://www.analog.com