• Title/Summary/Keyword: Single Photo Resection

Search Result 11, Processing Time 0.023 seconds

Comparative Analysis of Exterior Orientation Parameters of Smartphone Images Using Quaternion-Based SPR and PnP Algorithms (스마트폰 영상정보를 활용한 쿼터니언 기반 후방교회법과 PnP 알고리즘의 외부표정요소 비교 분석)

  • Kim, Namhoon;Lee, Ji-Sang;Bae, Jun-Su;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.465-472
    • /
    • 2019
  • The SPR (Single Photo Resection) is widely used as a method of estimating the EOPs (Exterior Orientation parameters) at the time of taking a photograph, but it requires an initial value and has a disadvantage of being sensitive to the initial value. In this study, we introduce quaternion-based single photo resection and PnP (Perspective-n-Point) algorithm that do not require initial values and compare the results. Photos were taken using a general smartphone, and the ground control point acquisition was based on the hybrid MMS (Mobile Mapping System) point cloud data possessed by the researchers. As a result, when the collinear condition based SPR is true value, quaternion-based SPR has higher attitude angle estimation accuracy than PnP algorithm. In case of camera position estimation, both algorithms showed accuracy within 0.8m when compared with ground control points.

A Study on the Determination of Plane Coordinates Using Single Photo Method (단사진 해석기법을 이용한 평면좌표 결정에 관한 연구)

  • 유복모;박운용;조강연;이용희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.37-46
    • /
    • 1987
  • The single photo method has a lot of applications in forestry, traffic accident managements, industry, criminal investigation, and in daily life. In this study a new single photo method was developed by classifying into the Space resection method and the 2 Dimensional Perspective Transformation method. Metric and nonmetric cameras were used to analyse the accuracy by means of single photo method, and the errors in coordinates and lengths were studied by changing the number and arrangement of control points to obtain the optimum condition for the single photo method. The influence of number and arrangement of control points on the accuracy was relatively small in case of the Metric WILD P31 and ASAHI PENTAX 6$\times$7 cameras, where as for errors it was a major factor in the Non-metric Nikon FM2. To overcome these defects, at least 6 control points should be used for the errors to be convergent and they should be distributed evenly over the surveying area. It was found that accuracy increased as the object to be photographed was placed in the perpendicular direction to the axis of camera.

  • PDF

Comparisons of Single Photo Resection Algorithms for the Determination of Exterior Orientation Parameters (단사진의 외부표정요소 결정을 위한 후방교회법 알고리즘의 비교)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.305-315
    • /
    • 2020
  • The purpose of this study is to compare algorithms of single photo resection, which determines the exterior orientation parameters used in fields such as photogrammetry, computer vision, robotics, etc. To this end, the algorithms were compared by generating experimental data by simulating terrain based on a camera used in aerial and close-range photogrammetry. Through experiments on aerial photographic camera that was taken almost vertically, it was possible to determine the exterior orientation parameters using three ground control points, but the Procrustes algorithm was sensitive to the configuration of the ground control points. Even in experiments with a close-range amateur camera where the attitude angles of the camera change significantly, the algorithm was sensitive to the configuration of the ground control points, and the other algorithms required at least six ground control points. Through experiments with two types of cameras, it was found that cosine lawbased spatial resection shows performance similar to that of a traditional photogrammetry algorithm because the number of iterations is short and no explicit initial values are required.

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

A 20-year experience of immediate mandibular reconstruction using free fibula osteocutaneous flaps following ameloblastoma resection: Radical resection, outcomes, and recurrence

  • Chai, Koh Siang;Omar, Farah Hany;Saad, Arman Zaharil Mat;Sulaiman, Wan Azman Wan;Halim, Ahmad Sukari
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.426-432
    • /
    • 2019
  • Background The mandible is an important structure that is located in the lower third of the face. Large mandibular defects after tumor resection cause loss of its function. This study assessed the outcomes and tumor recurrence after immediate mandibular reconstruction using a free fibula osteocutaneous flap following radical resection of ameloblastoma. Methods This is a retrospective non-randomized study of outcomes and tumor recurrence of all patients diagnosed with mandibular ameloblastoma from August 1997 until August 2017 (20 years) requiring free fibula osteocutaneous flap reconstruction at a single institution. The patients were identified through an electronic operative database; subsequently, their medical records and photo documentation were retrieved. Results Twenty-seven patients were included in this study. Eighteen patients were male, while nine were female. The majority of the patients (48.1%) were in their third decade of life when they were diagnosed with ameloblastoma. All of them underwent radical resection of the tumor with a surgical margin of 2 cm (hemimandibulectomy in cases with a large tumor) and immediate mandibular reconstruction with a free fibula osteocutaneous flap. Two patients required revision of a vascular anastomosis due to venous thrombosis postoperatively, while one patient developed a flap recipient site infection. The flap success rate was 100%. There was no tumor recurrence during a mean follow-up period of 5.6 years. Conclusions Mandibular ameloblastoma should be treated with segmental mandibulectomy (with a surgical margin of 2 cm) to reduce the risk of recurrence. Subsequent mandibular and adjacent soft tissue defects should be reconstructed immediately with a free fibula osteocutaneous flap.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

A Study for Efficient Methods of System Calibration between Optical and Range Sensors by Using Simulation (시뮬레이션을 통한 광학 및 레인지 센서 간의 효율적인 시스템 캘리브레이션 설계)

  • Won Seok, Choi;Chang Jae, Kim;Yong Il, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The study planned to suggest the efficient methods of system calibration between the range and optical sensors. The simulation was performed by considering i) design of test-bed, ii) mathematical methods of system calibration and iii) locations of the sensors. The test-bed was designed by considering specifications of the range and optical sensors. Also, the error levels of each sensor were considered in the process of simulation with dataset, which was generated under these predetermined conditions. The system calibration was carried out by using the simulated dataset in two different approaches, which are single photo resection and bundle adjustment. The results from the simulation determined that the bundle adjustment method is more efficient than the single photo resection in the system calibration between range and optical sensors. For the better results, we have used the data, obtained in various locations. In a conclusion, the most efficient case was in sequence of i) the bundle adjustment with ii) the simulated dataset, which were obtained between 2m to 4m away from the test-bed.

Development of GPS/IMU/SPR Integrated Algorithm and Performance Analysis for Determination of Precise Car Positioning (정밀 차량 위치결정을 위한 GPS/IMU/SPR 통합 알고리즘 개발 및 성능 분석)

  • Han, Joong-Hee;Kang, Beom Yeon;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.