• Title/Summary/Keyword: Sine-Gordon equation

Search Result 5, Processing Time 0.017 seconds

N-SOLITON SOLUTIONS FOR THE SINE-GORDON EQUATION OF DIFFERENT DIMENSIONS

  • Wazwaz, Abdul-Majid
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.925-934
    • /
    • 2012
  • In this work the sine-Gordon equation will be examined for multiple soliton solutions. The higher dimensional sine-Gordon equations will be studied for multiple soliton solutions as well. The simplified form of the Hirota's method will be employed to conduct this analytic study.

SINGULARITY FORMATION FOR A NONLINEAR VARIATIONAL SINE-GORDON EQUATION IN A MULTIDIMENSIONAL SPACE

  • Fengmei Qin;Kyungwoo Song;Qin Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1697-1704
    • /
    • 2023
  • We study a multidimensional nonlinear variational sine-Gordon equation, which can be used to describe long waves on a dipole chain in the continuum limit. By using the method of characteristics, we show that a solution of a nonlinear variational sine-Gordon equation with certain initial data in a multidimensional space has a singularity in finite time.

IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS

  • Ha, Jun-Hong;Nakagiri, Shin-Ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.931-950
    • /
    • 2006
  • We study the identification problems of constant parameters appearing in the perturbed sine-Gordon equation with the Neumann boundary condition. The existence of optimal parameters is proved, and necessary conditions are established for several types of observations by utilizing quadratic optimal control theory due to Lions [13].

OPTIMAL PARAMETERS FOR A DAMPED SINE-GORDON EQUATION

  • Ha, Jun-Hong;Gutman, Semion
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1105-1117
    • /
    • 2009
  • In this paper a parameter identification problem for a damped sine-Gordon equation is studied from the theoretical and numerical perspectives. A spectral method is developed for the solution of the state and the adjoint equations. The Powell's minimization method is used for the numerical parameter identification. The necessary conditions for the optimization problem are shown to yield the bang-bang control law. Numerical results are discussed and the applicability of the necessary conditions is examined.

Dynamics Oscillations in Suspension Bridges to Initial Conditions (현수교 다리에서의 초기치 문제에 대한 역학적 운동)

  • Hye-Young Oh
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.5
    • /
    • pp.569-574
    • /
    • 2002
  • We model the torsional oscillation of a suspension bridge, which is the forced sine-Cordon equation on a bounded domain. We use finite difference method to solve nonlinear partial differential equation numerically. The partial differential equation has multiple periodic solutions. Whether the span oscillates with small or large amplitude depends oかy on its initial displacement and velocity. Moreover, we observe that the qualitative properties are consistent with the behavior observed at the Tacoma Narrows Bridge on the day of its collapse.

  • PDF