• Title/Summary/Keyword: Simulation study

Search Result 27,293, Processing Time 0.057 seconds

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

A Study of Masterplot of Disaster Narrative between Korea, the US and Japan (한·미·일 재난 서사의 마스터플롯 비교 연구)

  • Park, In-Seong
    • Journal of Popular Narrative
    • /
    • v.26 no.2
    • /
    • pp.39-85
    • /
    • 2020
  • This paper examines the aspects of disaster narrative, which makes the most of the concept of 'masterplot' as a narrative simulation to solve problems. By analyzing and comparing the remnants of 'masterplots' operating in the disaster narratives of Korea, the United States, and Japan, the differences between each country and social community problem recognition and resolution will be discussed. Disaster narrative is the most suitable genre for applying the 'masterplot' toward community problem solving in today's global risk society, and the problem-solving method has cognitive differences for each community. First, in the case of American disaster narratives, civilian experts' response to natural disasters tracks the changes of heroes in today's 'Marvel Comic Universe' (MCU). Compared to the past, the close relationship between heroism and nationalism has been reduced, but the state remains functional even if it is bolstered by the heroes' voluntary cooperation and reflection ability. On the other hand, in Korea's disaster narratives, the disappearance of the country and paralysis of the function are foregrounded. In order to fill the void, a new family narrative occurs, consisting of a righteous army or people abandoned by the state. Korea's disaster narratives are sensitive to changes after the disaster, and the nation's recovery never returns to normal after the disaster. Finally, Japan's disaster narratives are defensive and neurotic. A fully state-led bureaucratic system depicts an obsessive nationalism that seeks to control all disasters, or even counteracts anti-heroic individuals who reject voluntary sacrifices and even abandon disaster conditions This paper was able to diagnose the impact and value of a 'masterplot' today by comparing a series of 'masterplots' and their variations and uses. In a time when the understanding and utilization of 'masterplots' are becoming more and more important in today's world where Over-the top(OTT) services are being provided worldwide, this paper attempt could be a fragmentary model for the distribution and sharing of global stories.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

A Plan for Activating Elderly Sports to Promote Health in the COVID-19 Era (코로나19 시대 건강증진을 위한 노인체육 활성화 방안)

  • Cho, Kyoung-Hwan
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.7
    • /
    • pp.141-160
    • /
    • 2020
  • The purpose of this study was to devise a specific plan for activating sports to promote health in old age against the prolonged COVID-19 pandemic. Through literature review, it also analyzed the association between health status and COVID-19 in old age, suggested health promotion policies and projects for elderly people, and presented a plan for activating sport to promote health in old age against COVID-19 era. First, it is necessary to revise the relevant laws, including the Sport Promotion Act and the Elderly Welfare Act, partially or entirely, make developmental and convergent legislations for elderly health and sports, and establish an institutional device as needed. Second, it is necessary to build an integrated digital platform for the elderly and make a supporting system that links facilities, programs, information, and job creation as part of a New Deal program in the field of sports on the basis of the Korean New Deal. Third, it is necessary to train elderly welfare professionals. Efforts should be made to establish more departments related to elderly sports in universities and make it compulsory to place elderly sports instructors at elderly leisure and welfare facilities. Fourth, it is necessary to develop contents related to health in old age. This means performing diverse movements by manipulating them through a virtual reality (VR) simulation. Fifth, it is necessary to make a greater investment in research and development related to elderly sports and relevant fields. This means the need to conduct constant research on healthy and active aging in a systematic and practical way through multidisciplinary cooperation. Sixth, it is necessary to establish and operate an elderly management agency (elderly health agency) under the influence of the Office of the Prime Minister. This means the need to secure independence in implementing the functions related to health promotion in old age and make comprehensive operation, which involves all the issues of health promotion in old age, daily function maintenance and rehabilitation, social adjustment, and long-term care, by establishing an elderly management agency in an effort to give lifelong health management to the elderly and cope with the untact, New Normal age.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Simulation and Feasibility Analysis of Aging Urban Park Refurbishment Project through the Application of Japan's Park-PFI System (일본 공모설치관리제도(Park-PFI)의 적용을 통한 노후 도시공원 정비사업 시뮬레이션 및 타당성 분석)

  • Kim, Yong-Gook;Kim, Young-Hyeon;Kim, Min-Seo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.13-29
    • /
    • 2023
  • Urban parks are social infrastructure supporting citizens' health, quality of life, and community formation. As the proportion of urban parks that have been established for more than 20 years is increasing, the need for refurbishment to improve the physical space environment and enhance the functions of aging urban parks is increasing. Since the government's refurbishment of aging urban parks has limitations in securing financial resources and promoting attractiveness, they must be promoted through public-private partnerships. Japan, which suffered from the problem of aging urban parks, has successfully promoted several park refurbishment projects by introducing the Park-PFI through the revision of the 「Urban Park Act」 in 2017. This study examines and analyzes the characteristics of the Japan Park-PFI as an alternative to improving the quality of aging domestic urban park services through public-private partnerships and the validity of the aging urban park refurbishment projects through Park-PFI. The main findings are as follows. First, it is necessary to start discussions on introducing Japan's Park-PFI according to the domestic conditions as a means of public-private partnership to improve the service quality and diversify the functions of aging urban parks. In order to introduce Park-PFI social discussions and follow-up studies on the deterioration of urban parks. Must be conducted. The installation of private capital and profit facilities and improvements of related regulations, such as the 「Parks and Green Spaces Act」 and the 「Public Property Act」, is required. Second, it is judged that the Park-PFI project is a policy alternative that can enhance the benefits to citizens, local governments, and private operators under the premise that the need to refurbish aging urban parks is high and the location is suitable for promoting the project. As a result of a pilot application of the Park-PFI project to Seyeong Park, an aging urban park located in Bupyeong-gu, Incheon, it was analyzed to be profitable in terms of the profitability index (PI), net present value (FNPV), and internal rate of return (FIRR). It is considered possible to participate in the business sector. At the local government level, private capital is used to improve the physical space environment of aging urban parks, as well as the refurbishment of the urban parks by utilizing financial resources generated by returning a portion of the facility usage fees and profits (0.5% of annual sales) of private operators. It was found that management budgets could be secured.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.