• Title/Summary/Keyword: Simulation Object

Search Result 1,460, Processing Time 0.032 seconds

Study on Research for Reducing Radiation Dose of Head and Neck for Cephalometric Radiography System (두부규격방사선촬영장치의 두경부 피폭 저감에 대한 연구)

  • OH, Yoonjin;Shin, Jae-won;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.291-298
    • /
    • 2016
  • Recently, the interest in the orthodontic treatment for children is increased by a rise in national income level. The number of cephalometric radiography that could diagnose a malocclusion and malposition between teeth and jawbone increased. It required attention to radiation exposure, because the subject of dental examination is children which are more sensitive to radiation and the head and neck, the object of that include radiation sensitive organ such as the thyroid, bone marrow, eyes, salivary gland, and so on. In this study, we measured two-dimensional dose distribution in cephalometric radiography system (VATEC Pax-400C) using Agfa CP-G Plus film and MagicMax Dosimeter, and calculated radiation organ dose of head and neck through MCNPX simulation. And then we designed a radiation protective device to decrease radiation dose. The dose distribution of the cephalometric radiography system irradiated the head and neck overall as well as the oral and maxillofacial parts. The radiation organ dose calculated that thyroid, oesophagus and eyes are irradiated high, and the radiation organ dose decreased about 70 ~ 80% by the application of the radiation protective device. The results of this study will be used construction of database for dental radiation exposure and research of reducing radiation dose.

The Changes of Defibrillation Time Depending on the Manual External Defibrillator Device (제세동 시행도구에 따른 제세동 지연시간의 변화)

  • Park, Si-Eun;Shin, Dong-Min
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.1
    • /
    • pp.81-90
    • /
    • 2012
  • Objectives: This study is to research delay time comparison for later defibrillation after hands off according to the changes in defibrillation electrodes. Study purpose: In defibrillation treatment that is the only way for cardiac arrest by arrhythmia, it is to find defibrillator device which can minimize late defibrillation delay time after important affect of hands off. Study object and method: After hands off according to the defibrillator device, we collected total 40 people for emergency medicine doctor, internal medicine doctor, general surgeon, nurse, emergency medical technician who are working at 2 CN, CS University hospitals in Gwangju Jeollanamdo district to find out hand off shock interval(HOSI). We then researched their general properties like occupation sector, experiences in clinic, gender, completion of AHA ACLS-P training and more. Then 40 participants continued ventricular fibrillation cardiac arrest simulation training (using human-model mannequin) designed by researcher and performed their roles as defibrillation operator. Each of participant used manual paddle and performed 4 times of defibrillation (150J) during 8 minutes of CPR and in 8day, the defibrillator devices were replaced from manual paddle to self-adhesive electrodes pads and 4 times of defibrillation (150J) under same simulation condition as manual paddle were performed. Study result: In comparison for delay time of later defibrillation after hands off of manual paddle and self adhesive electrodes pad, the self adhesive electrodes pad ($7.0{\pm}0.5sec$) seemed to reduce delay time of later defibrillation significantly (p<0.05) compared to manual paddle ($10.0{\pm}0.9sec$). The self adhesive electrodes pad, according to the general properties of participants, had no particular change in delay time after later defibrillation for the statistics (p>0.05) but the manual paddle had statistically significant differences for the occupation sector, experiences in clinic and gender (p<0.05). Conclusion: In defibrillation, the self adhesive electrodes pad($7.0{\pm}0.5sec$) showed short HOSI compared to manual paddle ($10.0{\pm}0.9sec$) significantly (p<0.05) and it applied identically for both existence and non-existence of ACLS-P training completion, experiences in clinic, gender and occupation sector. The manual paddle had also significant difference in experiences in clinic and occupation sector (p<0.05). which means the effect on HOSI according to the job mastery. Therefore, if the clinic experience is short or in case for the occupations without frequent defibrillation treatment has a danger of lowering success rate for the defibrillation using manual paddle. Therefore, it is true that using self adhesive electrodes pad for defibrillation electrodes when performing manual defibrillation in pre-hospital as well as in-hospital steps can generally minimize delay time of later defibrillation after hands off.

Automation of BIM Material Mapping to Activate Virtual Construction (가상건설 활성화를 위한 BIM 재질 매핑 자동화 기술)

  • Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2020
  • Recently, BIM has become mandatory in the construction field, research on various use cases is increasing. In particular, when virtual reality technology, one of the core technologies of the 4th industrial revolution, and BIM are combined, it can be used in various fields such as preliminary design review and construction simulation. Until now, however, virtual reality grafting technology is only used as a simple prototype or as a model house. Also, it is difficult to activate virtual construction because it is expensive to produce high-quality virtual reality contents. Therefore, in this paper, in order to increase the utilization and quality of the virtual construction field, a study was conducted to shorten the material mapping time, which takes a lot of time when producing virtual reality contents using BIM. To this end, object properties were assigned to enable material mapping in the BIM model, and materials most used in the construction field were configured, and automated material function development and final tests were conducted that automatically map properties and materials. For the test, 10 models were used and the test was repeated three times, and the productivity improvement of about 50.16% was finally achieved. In the future, we plan to conduct research on physical data weight reduction based on the advanced material mapping automation function and the large-capacity BIM model.

Initial System for Automation of PDQ-based Shape Quality Verification of Naval Ship Product Model (제품데이터품질(PDQ) 평가에 따른 함정 제품모델의 형상 품질검증 자동화 초기 시스템)

  • Oh, Dae-Kyun;Hwang, In-Hyuck;Ryu, Cheol-Ho;Lee, Dong-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, R.O.K. Navy is increasing re-usability of design data and application of M&S(Modeling and Simulation) through the establishment of collaborative product development environment focused on Naval Ship Product Model(NSPM). As a result, the reliability of the result of design is getting better, and furthermore, a study to improve quality of construction through simulation of production/operation is in progress. Accordingly, the database construction of design data and the DB(Database) quality become important, but there was not research related to those or it was just initial state. This paper conducted research about system of the quality verification process of shape elements which compose NSPM based on the quality verification guideline of NSPM as the result of the precedent study. The hull surface was limited as verification object. The study to verify two things that application of basic drawing by the cad model of hull surface, and whether there is error in the geometric quality of cad model was progressed. To achieve this goal, the verification criteria and algorithm were defined and the prototype system which is based on was developed.

A Research on the Application of Eco-Friendly Approval Criteria in Forest Land-use (자연친화적 산지이용허가기준 적용 방안 연구)

  • Park, Shin-Won;Choi, Sang-Hee;Cho, Young-Tae
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.33-43
    • /
    • 2012
  • The research which it sees is the simulation research for "The Ecological Diversion of Forest Land-Use System". It accomplished the simulation which applies a permission standard, it developed escape it did a model and the basic draft. From the research which it sees in order to investigate the application characteristic of natural intimate mountain district application standard the mountain district whole aspect instance middle actual object a time mountain district use standard about under selecting which it will yell it applied. "Natural intimate mountain district development standard triangular position plan research" from compatibility of the mode of life mountain district whole aspect permission standard which is proposed about under investigating it presented the improvement program and a institutional improvement direction of corresponding standard. About under preserving plan it applies the yearly environment the mountain district to sleep it prepares the foundation for it accomplished the transcendental research for. With the achievement resources which the mountain district has resultantly must preserve a value, limit of the development size it will be able to minimize the effect which it follows in development, the arrangement method back could be proposed, also the case which will use the mountain district where it is damaged induces the development which cabinets to the concept of demobilization, the case which will apply the existing forest resources takes a triangular position with the act it will be able to increase the circulating value of the resources and will do.

HMM-based Intent Recognition System using 3D Image Reconstruction Data (3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템)

  • Ko, Kwang-Enu;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.

A Study on the Development and Utilization of Indoor Spatial Information Visualization Tool Using the Open BIM based IFC Model (개방형 BIM 기반 IFC 모델을 이용한 실내공간정보 시각화 도구개발 및 활용방안 연구)

  • Ryu, Jung Rim;Mun, Son Ki;Choo, Seung Yeon
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.41-52
    • /
    • 2015
  • MOLIT (Minister of Land, Infrastructure and Transport) authorized Indoor Spatial Information as Basic spatial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little advantage to utilize as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilize for the maintenance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial Information with data visualization. The open-sources of IFC Exporter, a inner program of Revit (Autodesk Inc), is used to output Indoor Spatial Information. Directs 3D Library is also operated to visualize Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilized in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UAV (Unmaned Areal Vehicle), the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial information policy, high level of interoperability as indoor spatial information objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

Development of a Suitability Analysis System for Wind Energy Facilities Using 3D Web GIS (3차원 Web GIS 기반 풍력에너지 시설물 적지분석 시스템 개발)

  • Kim, Kwang-Deuk;Yun, Chang-Yeol;Jo, Myung-Hee;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • Recently, with an increased social interest in new and renewable energy resources, together with rapid advancement in IT(information technology) and spatial information technology, there have recently been a lot of attempts to find out methods to make systematic and scientific use of information technology and spatial information technology, depending upon a fusion with GIS(Geographic Information System) spatial information technology in the field of new and renewable energy. This paper developed a suitability analysis system to conduct a correct and precise analysis of an ideal place for wind energy facilities in comprehensive consideration of topographic, economic, and cultural environments. It also used recent spatial information technology including 3D GIS to develop a supportive system for an analysis and decision making of an ideal place for 3D Web GIS-based wind energy facilities like a precise field information implementation, a 3D result display, a 3D object implementation, simulation, and so on. These systems make it possible to build scientific new-renewable energy facilities, to collect, manage and analyze information in an accurate and quantitative manner. In addition, they help serve as a turning point for the construction of a real-time information supply system. Furthermore, they can support rational decision making by making it possible to analyze a variety of forms of field information through building a system for the management of 3D image-based information on new-renewable energy resources.

Detailed Representation of Liquid-Solid Mixed Surfaces with Adaptive Framework Based Hybrid SDF and Surface Reconstruction (적응형 프레임워크 기반의 하이브리드 부호거리장과 표면복원을 이용한 액체와 고체 혼합 표면의 세밀한 표현)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.11-19
    • /
    • 2017
  • We propose a new pipeline of fluid surface reconstruction that incorporates hybrid SDF(signed distance fields) and adaptive fluid surface techniques to finely reconstruct liquid-solid mixed surfaces. Previous particle-based fluid simulation suffer from a noisy surface problem when the particles are distributed irregularly. If a smoothing scheme is applied to reduce the problem, sharp and detailed features can be lost by over-smoothing artifacts. Our method constructs a hybrid SDF by combining signed distance values from the solid and liquid parts of the object. We also proposed a method of adaptively reconstructing the surface of the fluid to further improve the overall efficiency. This not only shows the detailed surface of the solid and liquid parts, but also the detail of the solid surface and the smooth fluid surface when both materials are mixed. We introduce the concept of guiding shape and propose a method to get signed distance value quickly. In addition, the hybrid SDF and mesh reconstruction techniques are integrated in the adaptive framework. As a result, our method improves the overall efficiency of the pipeline to restore fluid surfaces.