• Title/Summary/Keyword: Simulation Annealing

Search Result 180, Processing Time 0.023 seconds

Optimal Power Allocation for Wireless Uplink Transmissions Using Successive Interference Cancellation

  • Wu, Liaoyuan;Wang, Yamei;Han, Jianghong;Chen, Wenqiang;Wang, Lusheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2081-2101
    • /
    • 2016
  • Successive interference cancellation (SIC) is considered to be a promising technique to mitigate multi-user interference and achieve concurrent uplink transmissions, but the optimal power allocation (PA) issue for SIC users is not well addressed. In this article, we focus on the optimization of the PA ratio of users on an SIC channel and analytically obtain the optimal PA ratio with regard to the signal-to-interference-plus-noise ratio (SINR) threshold for successful demodulation and the sustainable demodulation error rate. Then, we design an efficient resource allocation (RA) scheme using the obtained optimal PA ratio. Finally, we compare the proposal with the near-optimum RA obtained by a simulated annealing search and the RA scheme with random PA. Simulation results show that our proposal achieves a performance close to the near-optimum and much higher performance than the random scheme in terms of total utility and Jain's fairness index. To demonstrate the applicability of our proposal, we also simulate the proposal in various network paradigms, including wireless local area network, body area network, and vehicular ad hoc network.

A Study on AGV Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 AGV의 조향 제어에 관한 연구)

  • Lee, Gwon-Sun;Lee, Yeong-Jin;Son, Ju-Han;Lee, Man-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.241-248
    • /
    • 2000
  • Until now, all of the port goods are transported manually by container transporter in the port. Recently there are a lot of studies about unmanned vehicle driven automatically. In terms of the vehicle automation, the control of steering and velocity on vehicle systems is very important part in container transporter. In common sense, vehicle systems have lots of nonlinear parameters so we have many difficulties in designing the optimal controller of them. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control the steering system optimally. We used the single-track model to pre-test the designed controller before appling to AGV. We also used the ES(evolutionary strategy) and SA(simulated annealing) algorithms to construct the hybrid tuning algorithm for parameters of controller. Finally, we had the computer simulation to verify that our designed controller has better performance than the other one.

  • PDF

Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications (파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성)

  • Ahn, Jung-Hac;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Formation of Rolling and Recrystallization Textures in IF Steel Cold-rolled by Cross-Roll Rolling Mill (교차롤로 냉간 압연한 IF 강에서 압연 집합조직과 재결정 집합조직의 형성)

  • Lee, Kye-Man;Kim, Sang-Hyun;Huh, Moo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Interstitial free (IF) steel sheets were cold rolled by the cross-roll rolling mill in which the roll axes are tilted by ${\pm}7.5^{\circ}$ away from the transverse direction of the rolled sample. After cross-roll rolling of IF steel sheets, the cold rolling and the recrystallization textures were distinguished from those observed after rolling in a normal rolling mill. The three-dimensional finite element method (FEM) simulation revealed that the operation of a large shear strain ${\varepsilon}_{23}$ during cross-roll rolling leads to the formation of a distinct cold rolling texture. During recrystallization annealing, a pronounced change in texture components was not observed, which is attributed to the lack of either selective growth or oriented nucleation during the recrystallization process. Cold cross-roll rolling led to the formation of finer recrystallized grains in IF steel sheets.

Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure (자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포)

  • Yoon, Hye Ryeon;Park, Young Sam;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T.;Du, W.Y.;Zhan, C.Y.;Wang, M.M.;Deng, H.W.;Xie, Z.M.;Li, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2801-2808
    • /
    • 2022
  • The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Numerical Analysis of Thermo-mechanical Stress and Cu Protrusion of Through-Silicon Via Structure (수치해석에 의한 TSV 구조의 열응력 및 구리 Protrusion 연구)

  • Jung, Hoon Sun;Lee, Mi Kyoung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • The through-silicon via (TSV) technology is essential for 3-dimensional integrated packaging. TSV technology, however, is still facing several reliability issues including interfacial delamination, crack generation and Cu protrusion. These reliability issues are attributed to themo-mechanical stress mainly caused by a large CTE mismatch between Cu via and surrounding Si. In this study, the thermo-mechanical reliability of copper TSV technology is investigated using numerical analysis. Finite element analysis (FEA) was conducted to analyze three dimensional distribution of the thermal stress and strain near the TSV and the silicon wafer. Several parametric studies were conducted, including the effect of via diameter, via-to-via spacing, and via density on TSV stress. In addition, effects of annealing temperature and via size on Cu protrusion were analyzed. To improve the reliability of the Cu TSV, small diameter via and less via density with proper via-to-via spacing were desirable. To reduce Cu protrusion, smaller via and lower fabrication temperature were recommended. These simulation results will help to understand the thermo-mechanical reliability issues, and provide the design guideline of TSV structure.

A Study on Configuration Optimization for Rotorcraft Fuel Cells based on Neural Network (인공신경망을 이용한 연료셀 형상 최적화 연구)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • Crashworthy fuel cells have been widely implemented to rotorcraft and rendered a great contribution for improving the survivability of crews and passengers. Since the embryonic stage of military rotorcraft history began, the US army has developed and practised a detailed military specification documenting the unique crashworthiness requirements for rotorcraft fuel cells to prevent most fatality due to post-crash fire. Foreign manufacturers have followed their long term experience to develop their fuel cells, and have reflected the results of crash impact tests on the trial-and-error based design and manufacturing procedures. Since the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, a series of numerical simulations of the crash impact test with digital mock-ups is necessary even at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. In the present study a number of numerical simulations on fuel cell crash impact tests are performed with a crash simulation software, Autodyn. The resulting equivalent stresses are further analysed to evaluate a number of appropriate design parameters and the artificial neural network and simulated annealing method are simultaneously implemented to optimize the crashworthy performance of fuel cells.