DOI QR코드

DOI QR Code

Formation of Rolling and Recrystallization Textures in IF Steel Cold-rolled by Cross-Roll Rolling Mill

교차롤로 냉간 압연한 IF 강에서 압연 집합조직과 재결정 집합조직의 형성

  • Lee, Kye-Man (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Sang-Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Huh, Moo-Young (Department of Materials Science and Engineering, Korea University)
  • 이계만 (고려대학교 신소재공학부) ;
  • 김상현 (고려대학교 신소재공학부) ;
  • 허무영 (고려대학교 신소재공학부)
  • Received : 2010.03.29
  • Published : 2010.07.22

Abstract

Interstitial free (IF) steel sheets were cold rolled by the cross-roll rolling mill in which the roll axes are tilted by ${\pm}7.5^{\circ}$ away from the transverse direction of the rolled sample. After cross-roll rolling of IF steel sheets, the cold rolling and the recrystallization textures were distinguished from those observed after rolling in a normal rolling mill. The three-dimensional finite element method (FEM) simulation revealed that the operation of a large shear strain ${\varepsilon}_{23}$ during cross-roll rolling leads to the formation of a distinct cold rolling texture. During recrystallization annealing, a pronounced change in texture components was not observed, which is attributed to the lack of either selective growth or oriented nucleation during the recrystallization process. Cold cross-roll rolling led to the formation of finer recrystallized grains in IF steel sheets.

Keywords

References

  1. O. Engler, M. Y. Huh, and C. N. Tome, Metall. Mater. Trans. 31A, 2299 (2000).
  2. M. Y. Huh, J. C. Park, and S. T. Lee, Met. Mater. 2, 141 (1996). https://doi.org/10.1007/BF03026088
  3. M. Y. Huh, Y. S. Cho, and O. Engler, Mater. Sci. Eng. A247, 152 (1998).
  4. H. G. Kang, M. Y. Huh, S. H. Park, and O. Engler, Steel Res. Int. 79, 489 (2008). https://doi.org/10.1002/srin.200806157
  5. H. C. Kim, H. G. Kang, and M. Y. Huh, J. Kor. Inst. Met. & Mater. 47, 356 (2009).
  6. T. Sakai, S. Hamada, and Y. Saito, Scripta Mater. 44, 2569 (2001). https://doi.org/10.1016/S1359-6462(01)00932-0
  7. N. J. Park, M. K. Lee, and M. Y. Huh, J. Kor. Inst. Met. & Mater. 38, 599 (2000).
  8. S. Li, F. Sun, and H. Li, Acta Mater. 58, 1317 (2010). https://doi.org/10.1016/j.actamat.2009.10.036
  9. M. Y. Huh, H. C. Kim, and O. Engler, Steel Res. Int. 71, 239 (2000). https://doi.org/10.1002/srin.200001223
  10. Y. B. Park, D. N. Lee, and G. Gottstein, Acta Metall. et Mater. 44, 3421 (1996). https://doi.org/10.1016/1359-6454(95)00414-9
  11. M.Y. Huh, J.H. Lee, S.H. Park, O. Engler, and D. Raabe, Steel Research Int. 76, 797 (2005). https://doi.org/10.1002/srin.200506098
  12. H. C. Kim, C. G. Kang, M. Y. Huh, and O. Engler, Scripta Mater. 54, 1439 (2006). https://doi.org/10.1016/j.scriptamat.2006.01.002
  13. M. Y. Huh, S. Y. Cho, and O. Engler, Mater. Sci. Eng. A315, 35 (2001).
  14. Y. Hayakawa and M. Kurosawa, Acta Mater. 50, 4527 (2002). https://doi.org/10.1016/S1359-6454(02)00271-9
  15. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Sci. Eng. A441, 349 (2006).
  16. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Lett. 61, 1504 (2007). https://doi.org/10.1016/j.matlet.2006.07.062
  17. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Mater. Sci. Eng. A473, 195 (2007).
  18. S. H. Kim, H. G. Kang, M. Y. Huh, and O. Engler, Mater. Sci. Eng. A508, 121 (2009).
  19. H. J. Bunge, Texture Analysis in Materials Science, Butterworths, London (1982).
  20. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach Sci. Publ., Amsterdam (2000).
  21. W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambrige University Press, New York (2007).
  22. R. A. Lebensohn and C. N. Tome, Acta Metall. Mater. 41, 2611 (1993). https://doi.org/10.1016/0956-7151(93)90130-K
  23. C. N. Tom, R. A. Lebensohn, Continuum Scale Simulation of Engineering Materials, p.473, Fundamentals, Microstructures, Process Applications, Wiley-VCH, Weinheim, Germany (2004).
  24. S. H. Choi and F. Barlat, Scripta Mater. 41, 981 (1999). https://doi.org/10.1016/S1359-6462(99)00241-9
  25. M. Y. Huh, K. R. Lee, and O. Engler, Inter. J. Plast. 20, 1183 (2004). https://doi.org/10.1016/j.ijplas.2003.08.003
  26. H. G. Kang, J. K. Kim, M. Y. Huh, and O. Engler, Mater. Sci. Eng. A452, 347 (2007).
  27. H. Inagaki, ISIJ Int. 34, 313 (1994). https://doi.org/10.2355/isijinternational.34.313
  28. W. B. Hutchinson, Acta Metall. 37, 1047 (1989). https://doi.org/10.1016/0001-6160(89)90101-6
  29. D. Raabe, Steel Res. 66, 222 (1995). https://doi.org/10.1002/srin.199501116
  30. R. K. Ray, J. J. Jonas, and R. E. Hook, Intern. Mat. Rev. 39, 129 (1994). https://doi.org/10.1179/095066094790326112
  31. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren, Mater. Sci. Eng. A238, 343 (1997).
  32. M. Y. Huh, Y. S. Cho, J. S. Kim, and O. Engler, Z. Metallkd. 90, 124 (1999).
  33. J. D. Verhoeven, Fundamentals of Physical Metallurgy, John Willey & Sons, New York (1975).
  34. J. J. Nah, H. G. Kang, M. Y. Huh, and O. Engler, Scripta Mater. 58, 500 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.049