• Title/Summary/Keyword: Simulated Algorithm

Search Result 1,788, Processing Time 0.03 seconds

Effect of Interactive Multimedia PE Teaching Based on the Simulated Annealing Algorithm

  • Zhao, Mingfeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.562-574
    • /
    • 2022
  • As traditional ways of evaluation prove to be ineffective in evaluating the effect of interactive multimedia physical education (PE) teaching, this study develops a new evaluation model based on the simulated annealing algorithm. After the evaluation subjects and the principle of the evaluation system are determined, different subjects are well chosen to constitute the evaluation system and given the weight. The backpropagation neural network has been improved through the simulated annealing algorithm, whose improvement indicates the completion of the evaluation model. Simulation results show that the evaluation model is highly efficient. Compared with traditional evaluation models, the proposed one enhances students' performance in PE classes by 50%.

A Penalized Principal Component Analysis using Simulated Annealing

  • Park, Chongsun;Moon, Jong Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1025-1036
    • /
    • 2003
  • Variable selection algorithm for principal component analysis using penalty function is proposed. We use the fact that usual principal component problem can be expressed as a maximization problem with appropriate constraints and we will add penalty function to this maximization problem. Simulated annealing algorithm is used in searching for optimal solutions with penalty functions. Comparisons between several well-known penalty functions through simulation reveals that the HARD penalty function should be suggested as the best one in several aspects. Illustrations with real and simulated examples are provided.

Development of a Heuristic Algorithm Based on Simulated Annealing for Time-Resource Tradeoffs in Project Scheduling Problems (시간-자원 트레이드오프 프로젝트 스케줄링 문제 해결을 위한 시뮬레이티드 어닐링 기반 휴리스틱 알고리즘 개발)

  • Kim, Geon-A;Seo, Yoon-Ho
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.175-197
    • /
    • 2019
  • Purpose This study develops a heuristic algorithm to solve the time-resource tradeoffs in project scheduling problems with a real basis. Design/methodology/approach Resource constrained project scheduling problem with time-resource tradeoff is well-known as one of the NP-hard problems. Previous researchers have proposed heuristic that minimize Makespan of project scheduling by deriving optimal combinations from finite combinations of time and resource. We studied to solve project scheduling problems by deriving optimal values from infinite combinations. Findings We developed heuristic algorithm named Push Algorithm that derives optimal combinations from infinite combinations of time and resources. Developed heuristic algorithm based on simulated annealing shows better improved results than genetic algorithm and further research suggestion was discussed as a project scheduling problem with multiple resources of real numbers.

A space partitioning method embedded in a simulated annealing algorithm for facility layout problems with shape constraints

  • Kim, Jae-Gon;Kim, Yeong-Dae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.465-468
    • /
    • 1996
  • We deal with facility layout problems with shape constraints. A simulated annealing algorithm is developed for the problems. In the algorithm, a solution is encoded as a matrix that has information about relative locations of the facilities in the floor. A block layout is constructed by partitioning the floor into a set of rectangular blocks according to the information while satisfying areas of facilities. In this paper, three methods are suggested for the partitioning procedure and they are employed in the simulated annealing algorithm. Results of computational experiments show that the proposed algorithm performs better than existing algorithms, especially for problems with tight shape constraints.

  • PDF

Development of an Efficient Algorithm for the Intersection Calculations in a Simulated Radiograph (시뮬레이트된 방사선 사진에서 엑스선과 물체의 교차점 계산을 위한 효율적인 알고리즘의 개발)

  • O, Jae-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-71
    • /
    • 1992
  • This paper develops an algorithm for efficiently computing the intersection points between rays and an object in a simulated radiograph. This algorithm allows interactive calculation of simulated radiographs for very complex parts. It needs a geometric model of a part which is approximated by a bounding surface made up of flat triangular polygons. Since rays have a point source, a perspective transformation is applied to convert the point source problem to one that has parallel rays. This permits to use a scan-line algorithm which utilizes the coherence of the grid of rays for the intersection calculations. The efficiency of the algorithm is shown by comparing compute time of the intersection calculations to a commercial software that computes each ray intersection independently.

  • PDF

A New Hybrid Genetic Algorithm for Nonlinear Channel Blind Equalization

  • Han, Soowhan;Lee, Imgeun;Han, Changwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • In this study, a hybrid genetic algorithm merged with simulated annealing is presented to solve nonlinear channel blind equalization problems. The equalization of nonlinear channels is more complicated one, but it is of more practical use in real world environments. The proposed hybrid genetic algorithm with simulated annealing is used to estimate the output states of nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. By using the desired channel states derived from these estimated output states of the nonlinear channel, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA. In particular, we observe a relatively high accuracy and fast convergence of the method.

Task Scheduling Algorithm in Multiprocessor System Using Genetic Algorithm (유전 알고리즘을 이용한 멀티프로세서 시스템에서의 태스크 스케쥴링 알고리즘)

  • Kim Hyun-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 2006
  • The task scheduling in multiprocessor system is one of the key elements in the effective utilization of multiprocessor systems. The optimal assignment of tasks to multiprocessor is, in almost practical cases, an NP-hard problem. Consequently algorithms based on various modern heuristics have been proposed for practical reason. This paper proposes a new task scheduling algorithm using Genetic Algorithm which combines simulated annealing (GA+SA) in multiprocessor environment. In solution algorithms, the Genetic Algorithm (GA) and the simulated annealing (SA) are cooperatively used. In this method, the convergence of GA is improved by introducing the probability of SA as the criterion for acceptance of new trial solution. The objective of proposed scheduling algorithm is to minimize makespan. The effectiveness of the proposed algorithm is shown through simulation studies. In simulation studies, the result of proposed algorithm is better than that of any other algorithms.

  • PDF

Solving Cluster Based Multicast Routing Problems Using A Simulated Annealing Algorithm (시뮬레이티디 어닐링 알고리즘을 이용한 클러스터 기반의 멀티캐스트 라우팅 문제 해법)

  • Kang Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • This paper proposes a Simulated Annealing(SA) algorithm for cluster-based Multicast Routing problems. Multicasting, the transmission of data to a group, can be solved from constructing multicast tree, that is. the whole network is partitioned to some clusters and the clusters are constructed by multicast tree. Multicast tree can be constructed by minimum-cost Steiner tree. In this paper, an SA algorithm is used in the minimum-cost Steiner tree. Especially, in SA, the cooling schedule is an important factor for the algorithm. Hence, in this paper, a cooling schedule is proposed for SA for multicast routing problems and analyzed the simulation results.

  • PDF

Design and Implementation of a Genetic Algorithm for Circuit Partitioning (회로 분할 유전자 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.97-102
    • /
    • 2001
  • In computer-aided design, partitioning is task of clustering objects into groups to that a given objection function is optimized It is used at the layout level to fin strongly connected components that can be placed together in order to minimize the layout area and propagation delay. Partitioning can also be used to cluster variables and operation into groups for scheduling and unit selection in high-level synthesis. The most popular algorithms partitioning include the Kernighan-Lin algorithm Fiduccia-Mattheyses heuristic and simulated annealing In this paper we propose a genetic algorithm searching solution space for the circuit partitioning problem. and then compare it with simulated annealing by analyzing the results of implementation.

  • PDF

On-line Vector Quantizer Design Using Simulated Annealing Method (Simulated Annealing 방법을 이용한 온라인 벡터 양자화기 설계)

  • Song, Geun-Bae;Lee, Haeng-Se
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.343-350
    • /
    • 2001
  • 백터 양자화기 설계는 다차원의 목적함수를 최소화하는 학습 알고리즘을 필요로 한다. 일반화된 Lloyd 방법(GLA)은 벡터 양자화기 설계를 위해 오늘날 가장 널리 사용되는 알고리즘이다. GLA 는 일괄처리(batch) 방식으로 코드북을 생성하며 목적함수를 단조 감소시키는 강하법(descent algorithm)의 일종이다. 한편 Kohonen 학습법(KLA)은 학습벡터가 입력되는 동안 코드북이 갱신되는 온라인 벡터 양자화기 설계 알고리즘 이다. KLA는 원래 신경망 학습을 위해 Kohonen에 의해 제안되었다. KLA 역시 GLA와 마찬가지로 강하법의 일종이라 할 수 있다. 따라서 이들 두 알고리즘은, 비록 사용하기 편리하고 안정적으로 동작을 하지만, 극소(local minimum) 점으로 수렴하는 문제를 안고 있다. 우리는 이 문제와 관련하여 simulated annealing(SA) 방법의 응용을 논하고자 한다. SA는 현재까지 극소에 빠지지 않고 최소(global minimum)로 수렴하면서, 해의 수렴이 (통계적으로) 보장되는 유일한 방법이라 할 수 있다. 우리는 먼저 GLA에 SA를 응용한 그 동안의 연구를 개괄한다. 다음으로 온라인 방식의 벡터 양자화가 설계에 SA 방법을 응용함으로써 SA 방법에 기초한 새로운 온라인 학습 알고리즘을 제안한다. 우리는 이 알고리즘을 OLVQ-SA 알고리즘이라 부르기로 한다. 가우스-마코프 소스와 음성데이터에 대한 벡터양자화 실험 결과 제안된 방법이 KLA 보다 일관되게 우수한 코드북을 생성함을 보인다.

  • PDF