• Title/Summary/Keyword: Simple-Direct-Injective module

Search Result 5, Processing Time 0.021 seconds

Some Results on Simple-Direct-Injective Modules

  • Derya Keskin Tutuncu;Rachid Tribak
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.521-537
    • /
    • 2023
  • A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with A ≅ B and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS

  • Nguyen Thi Thu Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.339-348
    • /
    • 2023
  • It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right R-module is nilpotent-invariant. We prove that R ≅ R1 × R2, where R1, R2 are rings which satisfy R1 is a semi-simple Artinian ring and R2 is square-free as a right R2-module and all idempotents of R2 is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right R-modules. Such a module is shown to have isomorphic simple modules eR and fR, where e, f are orthogonal primitive idempotents such that eRf ≠ 0.

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.

Almost Projective Modules over Artin Algebras

  • Park, Jun Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.43-53
    • /
    • 1988
  • The main result of this paper is a characterization of almost projective modules over art in algebras by means of irreducible maps and almost split sequences. A module X is an almost projective module if and only if it has a presentation $0{\longrightarrow}L{\longrightarrow^{\alpha}}P{\longrightarrow}X{\longrightarrow}0$ with projective module P and irreducible maps ${\alpha}$. Let X be an injective almost projective non simple module and $0{\rightarrow}Dtr(x){\rightarrow}E{\rightarrow}X{\rightarrow}0$ be an almost split sequence. If $E=E_1{\oplus}E_2$ is a direct decomposition of indecomposable modules then ${\ell}(X)=3$.

  • PDF