In the finite element modelling of long-span cable-stayed bridges, there are a lot of uncertainties brought about by the complex structural configuration, material behaviour, boundary conditions, structural connections, etc. In order to reduce the discrepancies between the theoretical finite element model and the actual static and dynamic behaviour, updating is indispensable after establishment of the finite element model to provide a reliable baseline version for further analysis. Traditional sensitivity-based updating methods cannot support updating based on static and dynamic measurement data at the same time. The finite element model is required in every optimization iteration which limits the efficiency greatly. A convenient but accurate Kriging surrogate model for updating of the finite element model of cable-stayed bridge is proposed. First, a simple cable-stayed bridge is used to verify the method and the updating results of Kriging model are compared with those using the response surface model. Results show that Kriging model has higher accuracy than the response surface model. Then the method is utilized to update the model of a long-span cable-stayed bridge in Hong Kong. The natural frequencies are extracted using various methods from the ambient data collected by the Wind and Structural Health Monitoring System installed on the bridge. The maximum deflection records at two specific locations in the load test form the updating objective function. Finally, the fatigue lives of the structure at two cross sections are calculated with the finite element models before and after updating considering the mean stress effect. Results are compared with those calculated from the strain gauge data for verification.
Journal of the Korean Association of Geographic Information Studies
/
v.13
no.3
/
pp.29-41
/
2010
In this study, the prediction errors of various spatial interpolation methods used to model values at unmeasured locations was compared and the accuracy of these predictions was evaluated. The root mean square (RMS) was calculated by processing different parameters associated with spatial interpolation by using techniques such as inverse distance weighting, kriging, local polynomial interpolation and radial basis function to known elevation data of the east coastal area under the same condition. As a result, a circular model of simple kriging reached the smallest RMS value. Prediction map using the multiquadric method of a radial basis function was coincident with the spatial distribution obtained by constructing a triangulated irregular network of the study area through the raster mathematics. In addition, better interpolation results can be obtained by setting the optimal power value provided under the selected condition.
In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.221-221
/
2016
최근 레이더를 이용한 정량적 강수추정과 관련된 연구가 활발히 수행되고 있으며, 우량계와 레이더 자료의 합성과 관련된 연구가 수행되고 있다. 이는 정도 높은 우량계 자료의 장점과 강우의 공간분포를 파악할 수 있는 레이더 자료의 장점을 결합하여 고품질의 자료를 생산할 수 있기 때문이다. 자료합성과 관련된 다양한 기법이 도입되었고, 크리깅의 한 종류인 코크리깅이 널리 사용되고 있다. 크리깅은 값을 알고 있는 지점의 자료를 가중선형 조합하여 미지점의 값을 예측하는 경험적 방법으로 연속적이며 정규분포를 따르는 자료에 대해 유효하다. 그러나 강우자료는 강한 양의 왜곡도를 나타나고 간헐성도 강하게 나타나 크리깅의 이러한 조건을 만족시키지 못한다. 이로 인해 강우 자료에 크리깅을 수행할 경우 예측 값이 왜곡되거나 편향될 가능성이 크다. 이에 본 연구에서는 강우의 간헐성과 정규분포를 따르지 않는 특성을 고려하여 단순크리깅의 적용방법을 개선하였다. 단순크리깅은 가장 간단한 크리깅 기법으로 설명이 쉽고 적용사례를 비교하기 유리하여 이를 개선하면 다른 복잡한 크리깅 기법에도 쉽게 적용이 가능한 이점이 있다. 본 연구에서는 모의 자료와 레이더 강우 자료를 이용하여 단순크리깅을 수행하였고, 그 결과를 비교하여 자료의 간헐성과 비정규적 특성이 예측 값에 미치는 영향을 분석하였다.
This paper presents a two-stage geostatistical integration approach that aims at downscaling of coarse scale remote sensing data. First, downscaling of the coarse scale sedoncary data is implemented using area-to-point kriging, and this result will be used as trend components on the next integration stage. Then simple kriging with local varying means that integrates sparse precise observation data with the downscaled data is applied to generate thematic information at a finer scale. The presented approach can not only account for the statistical relationships between precise observation and secondary data acquired at the different scales, but also to calibrate the errors in the secondary data through the integration with precise observation data. An experiment for precipitation mapping with weather station data and TRMM (Tropical Rainfall Measuring Mission) data acquired at a coarse scale is carried out to illustrate the applicability of the presented approach. From the experiment, the geostatistical downscaling approach applied in this paper could generate detailed thematic information at various finer target scales that reproduced the original TRMM precipitation values when upscaled. And the integration of the downscaled secondary information with precise observation data showed better prediction capability than that of a conventional univariate kriging algorithm. Thus, it is expected that the presented approach would be effectively used for downscaling of coarse scale data with various data acquired at different scales.
Evaluating the qualitative the qualitative process of water resources by using various indicators, as one of the most prevalent methods for optimal managing of water bodies, is necessary for having one regular plan for protection of water quality. In this study, zoning maps were developed on a yearly basis by collecting and reviewing the process, validating, and performing statistical tests on qualitative parameters҆ data of the Iranian aquifers from 1995 to 2020 using Geographic Information System (GIS), and based on Inverse Distance Weighting (IDW), Radial Basic Function (RBF), and Global Polynomial Interpolation (GPI) methods and Kriging and Co-Kriging techniques in three types including simple, ordinary, and universal. Then, minimum uncertainty and zoning error in addition to proximity for ASE and RMSE amount, was selected as the optimum model. Afterwards, the selected model was zoned by using Scholar and Wilcox. General evaluation of groundwater situation of Iran, revealed that 59.70 and 39.86% of the resources are classified into the class of unsuitable for agricultural and drinking purposes, respectively indicating the crisis of groundwater quality in Iran. Finally, for validating the extracted results, spatial changes in water quality were evaluated using the Groundwater Quality Index (GWQI), indicating high sensitivity of aquifers to small quantitative changes in water level in addition to severe shortage of groundwater reserves in Iran.
Transactions of the Korean Society of Mechanical Engineers A
/
v.33
no.6
/
pp.607-613
/
2009
In this paper, we made a simple paper feeding system which is one of MTS (media transport system) and controllers. The plant has a flexible paper and two driving rollers and two driven rollers. The control system has two conventional PID controllers. Skew angle and feeding speed of MTS deteriorate the quality of feeding system. In order to control a feeding speed and skew of feeding paper, we control rotational velocity of two driving rollers. Therefore, this controller has two inputs and two outputs as MIMO (multi-input and multi-output) system. The control inputs were the feeding speed and the skew displacement of the paper. The control outputs were the rotational velocity to each driving roller. To find appropriate PID gains of two controllers, we proposed an optimization technique. We assume the system variables and performance of a whole system as follows. PID gains of two controllers for skew and feeding speed are system variables. System performance is both skew and feeding speed. We simulates to making mathematical correlation using global Kriging interpolation. To find appropriate value of system variables, optimization method is simulation in sequence as following method. First, the optimization solver simulates with DOE (design of experiment) tables to find correlation equation of both system variable and performances. Then, the solver guesses the appropriate values and simulates if the system variables are appropriate or not. If the result of validation doesn't satisfy the convergence and iteration tolerance, the solver makes a new Kriging models and iterates this sequence until satisfy the tolerances.
The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.
Geostatistical data or point-referenced data have the information on the monitoring stations of interest where the observations are measured. Practical geostatistical data are obtained from a wide variety of observational monitoring networks that are mainly operated by the Korean government. When we analyze geostatistical data and predict the expectations at unobservable locations, we can improve the reliability of the prediction by utilizing some relevant spatial data obtained from different observational monitoring networks and blend them with the measurements of our main interest. In this paper, we consider the hierarchical spatial linear model that enables us to link spatial variables from different resources but with similar patterns and guarantee the precision of the prediction. We compare the proposed model to a classical linear regression model and simple kriging in terms of some information criteria and one-leave-out cross-validation. Real application deals with Sulfur Dioxide($SO_2$) measurements from the urban air pollution monitoring network and wind speed data from the surface observation network.
In modem petroleum reservoir engineering, the characterization of reservoir heterogeneities is very important to accurately understand and predict reservoir production performance. Formation evaluation for the description of reservoir is generally conducted by performing the analysis of well logging, core testing, and well testing. However, the measured data points by well logging or core testing are in general very sparse and hence reservoir properties should be interpolated and extrapolated from measured points to uncharacterized areas. In assigning the data for the unknown points, simple averaging technique is not feasible as optimum estimation method since this method does not account the spatial relationship between the data points. The main goal of this work is to develop PC-version of multi-purpose geostatistical model in which several stages are systematically proceeded. In the development of model, the simulator employs a automatic selection of semivariogram function such as exponential or spherical model with the best values of $R^2$. The simulator also implements a special algorithm for the fitting of semivariogram function to experimental sernivariogram. The special algorithm such as trial and error scheme is devised since this method is much more reliable and stable than Gauss-Newton method. The simulator has been tested under stringent conditions and found to be stable. Finally, the validity and the applicability of the developed model have been studied against some existing actual field data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.