DOI QR코드

DOI QR Code

Geostatistical Downscaling of Coarse Scale Remote Sensing Data and Integration with Precise Observation Data for Generation of Fine Scale Thematic Information

고해상도 주제 정보 생성을 위한 저해상도 원격탐사 자료의 지구통계학기반 상세화 및 정밀 관측 자료와의 통합

  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University)
  • 박노욱 (인하대학교 지리정보공학과)
  • Received : 2013.01.04
  • Accepted : 2013.02.09
  • Published : 2013.02.28

Abstract

This paper presents a two-stage geostatistical integration approach that aims at downscaling of coarse scale remote sensing data. First, downscaling of the coarse scale sedoncary data is implemented using area-to-point kriging, and this result will be used as trend components on the next integration stage. Then simple kriging with local varying means that integrates sparse precise observation data with the downscaled data is applied to generate thematic information at a finer scale. The presented approach can not only account for the statistical relationships between precise observation and secondary data acquired at the different scales, but also to calibrate the errors in the secondary data through the integration with precise observation data. An experiment for precipitation mapping with weather station data and TRMM (Tropical Rainfall Measuring Mission) data acquired at a coarse scale is carried out to illustrate the applicability of the presented approach. From the experiment, the geostatistical downscaling approach applied in this paper could generate detailed thematic information at various finer target scales that reproduced the original TRMM precipitation values when upscaled. And the integration of the downscaled secondary information with precise observation data showed better prediction capability than that of a conventional univariate kriging algorithm. Thus, it is expected that the presented approach would be effectively used for downscaling of coarse scale data with various data acquired at different scales.

이 논문에서는 저해상도 원격탐사 자료 기반 주제도의 상세화를 목적으로 2단계로 구성된 지구통계학적 통합 기법을 제안하였다. 우선 영역-점 변환 크리깅을 이용하여 저해상도 부가 자료의 상세화를 수행하고, 이 정보는 이후 통합 과정에서 경향 성분으로 이용된다. 그리고 상세화된 부가 자료와 소수의 정밀 관측 자료와의 통합에 가변적 지역 평균 기반 단순 크리깅을 적용한다. 제안 기법은 저해상도 부가 자료의 상세화를 통해 해상도 차이에 따른 정밀 관측 자료와 부가 자료와의 통계적 연관성을 반영할 수 있으며, 정밀 조사 자료와의 통합을 통해 부가 자료의 오류를 보정할 수 있는 장점이 있다. 제안 기법의 적용성 평가를 위해, 지상 관측 강수 자료와 TRMM 자료와의 통합을 이용한 고해상도 강수 주제도 제작 연구를 수행하였다. 실험 결과, 영역-점 변환 크리깅을 통해 원 자료 스케일의 TRMM 강수값을 재생산할 수 있는 다양한 목표 고해상도에서의 상세 정보 추출이 가능하였다. 그리고 이 자료를 정밀 관측 자료와 통합함으로써 정밀 관측 자료만을 이용하는 단변량 공간 예측 기법에 비해 향상된 예측 정확도를 보였다. 따라서 제안 기법은 서로 다른 해상도를 가지는 자료를 대상으로 저해상도 부가 자료의 상세화에 효율적으로 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Chung, S.-Y. and K.-K. Lee, 1995. Application of cokriging for the estimation of groundwater level distribution at the Najido waste landfill area, Journal of the Korean Society of Groundwater Environment, 2(2): 58-63 (in Korean with English abstract).
  2. Deutsch, C.V. and A.G. Journel, 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd Edition, Oxford University Press.
  3. Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation, Oxford University Press.
  4. Goovaerts, P., 1999. Using elevation to aid the geostatistical mapping of rainfall erosivity, Catena, 34(3-4): 227-243. https://doi.org/10.1016/S0341-8162(98)00116-7
  5. Goovaerts, P., 2008. Kriging and semivariogram deconvolution in the presence of irregular geographical units, Mathematical Geosciences, 40(1): 101-128. https://doi.org/10.1007/s11004-007-9129-1
  6. Goovaerts, P., 2010. Combining areal and point data in geostatistical interpolation: application to soil science and medical geography, Mathematical Geosciences, 42(5): 535-554. https://doi.org/10.1007/s11004-010-9286-5
  7. Journel, A.G. and C.J. Huijbregts, 1978. Mining Geostatistics, Academic Press.
  8. Kaheil, Y.H., M.K. Gill, M. McKee, L.A. Bastida, and E. Rosero, 2008. Downscaling and assimilation of surface soil moisture using ground truth measurements, IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1375-1384. https://doi.org/10.1109/TGRS.2008.916086
  9. Kyriakidis, P.C., 2004. A geostatistical framework for area-to-point spatial interpolation, Geographical Analysis, 36(3): 259-289. https://doi.org/10.1111/j.1538-4632.2004.tb01135.x
  10. Liu, Y. and A.G. Journel, 2009. A package for geostatisical integration of coarse and fine scale data, Computers and Geosciences, 35(3): 527-547. https://doi.org/10.1016/j.cageo.2007.12.015
  11. Oh, S., 2009. Geostatistical integration of multigeophysical data measured at diferent ranges, Geophysics and Geophysical Exploration, 12(4): 309-315 (in Korean with English abstract).
  12. Park, N.-W., 2010. Downscaling of thematic maps based on remote sensing data using multiscale geostatistics, Korean Journal of Remote Sensing, 26(1): 29-38 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.1.29
  13. Park, N.-W., 2011. The effects of spatial patterns in low resolution thematic maps on geostatistical downscaling, Korean Journal of Remote Sensing, 27(6): 625-635. https://doi.org/10.7780/kjrs.2011.27.6.625
  14. Park, N.-W., D.-H. Jang, and K.-H. Chi, 2009. Integration of IKONOS imagery for geostatistical mapping of sediment grain size at Baramarae beach, Korea, International Journal of Remote Sensing, 30(21): 5703-5724. https://doi.org/10.1080/01431160902729564
  15. Sales, M.H., C.M. Souza Jr., P.C. Kyriakidis, D.A. Roberts, and E. Vidal, 2007. Improving spatial distribution estimation of forest biomass with geostatistics: a case study for Rondonia, Brazil, Ecological Modeling, 205(1-2): 221-230. https://doi.org/10.1016/j.ecolmodel.2007.02.033
  16. Simbahan, G.C., A. Dobermann, P. Goovaerts, J. Ping, and M.L. Haddix, 2006. Fine-resolution mapping of soil organic carbon based on multivariate secondary data, Geoderma, 132(3-4): 471-489. https://doi.org/10.1016/j.geoderma.2005.07.001

Cited by

  1. Research Trend Analysis of Geospatial Information in South Korea Using Text-Mining Technology vol.2017, pp.1687-7268, 2017, https://doi.org/10.1155/2017/2765256