• Title/Summary/Keyword: Simple adaptive control

Search Result 282, Processing Time 0.03 seconds

DECENTRALIZE)) ADAPTIVE CONTROL FOR ROBOT MANIPULATOR (로보트 매니퓰레이터의 비집중 적응제어)

  • Lee, Sang-Cheol;Chung, Chan-Su
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.504-509
    • /
    • 1990
  • This paper presents a decentralized adaptive control scheme for multi-Joint robot manipulators based on the independent joint control scheme. The control object is to achieve accurate tracking of desired Joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simple by a feedback controller which ensure stable and also a position-velocity-acceleration feedforward controller and also auxiliary signal, with adjustable gains. Simulation results are given for a two-link manipulator under independent control, proposed decentralized adaptive control of manipulator is feasible. In spite of a pay load variation and strong static and dynamic couplings that exist between the joints.

  • PDF

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

Adaptive Backstepping Control Using Self Recurrent Wavelet Neural Network for Stable Walking of the Biped Robots (이족 로봇의 안정한 걸음새를 위한 자기 회귀 웨이블릿 신경 회로망을 이용한 적응 백스테핑 제어)

  • Yoo Sung-Jin;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.233-240
    • /
    • 2006
  • This paper presents the robust control method using a self recurrent wavelet neural network (SRWNN) via adaptive backstepping design technique for stable walking of biped robots with unknown model uncertainties. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the biped robots. The adaptation laws for weights of the SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Computer simulations of a five-link biped robot with unknown model uncertainties verify the validity of the proposed control system.

Formation Control of Mobile Robots using Adaptive PID Controller (적응 PID 제어기를 이용한 이동로봇의 군집제어)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2554-2561
    • /
    • 2015
  • In this paper, we strengthen the advantages of a simple PID controller as a study on the formation control of mobile robots and propose an adaptive PID controller with robust performance at the dynamics characteristics of following robot. Simulation studies show that the adaptive PID controller has better keeping constant distance and angle such as tracking performance of following robot for the formation control than a conventional PID controller. This is the proposed adaptive PID controller to change the gains is found to represent the best performance. This is able to verify that the performance of the proposed adaptive PID controller is excellent.

A STUDY ON THE RELATION BETWEEN CLOSED-FORM DESCRIPTION AND RECURSIVE-FORM REALIZATION OF ASAPTIVE CONTROL OF MANIPULATORS

  • Kubozono, Takeshi;Yamakita, Masaki;Furuta, Katsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1785-1789
    • /
    • 1991
  • Recently, a number of papers on adaptive control scheme of manipulators are proposed. Slotine and Li[1] showed an adaptive control scheme for robot manipulator. The controller was described in closed form. And later Niemeyer and Slotine discussed about a computational implementation of the controller in recursive form[2]. Walker proposed another adaptive control scheme which can be implemented by a recursive-form controller[4]. Closed-form description is used for the analysis or design of adaptive control systems while recursive-form realization is used for implementation of the controller. The relation between the closed-form realization and the recursive-form one seems to be inadequately referred. Hence, it makes sense to consider the relation between the closed-form description and the recursive-form one. In this paper, first, we make a simple derivation of an closed-form dynamics description of a robot arm from its recursive-form description. And then we derive the closed-form realization of Walker's scheme applied to manipulators having no kinematic loop. We clarify the difference between the Walker's scheme and Slotine's and evaluate the convergence under the controllers.

  • PDF

An Adaptive Synthetic Control Chart for Detecting Shifts in the Process Mean (공정평균 이동을 탐지하기 위한 적응 합성 관리도)

  • Lim Taejin
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.169-183
    • /
    • 2004
  • The synthetic control chart (SCC) proposed by Wu and Spedding (2000) is to detect shifts in the process mean. The performance was re-evaluated by Davis and Woodall (2002), and the steady-state average run length (ARL) performance was shown to be inferior to cumulative sum (CUSUM) or exponentially weighted moving average (EWMA) chart This paper proposes a simple adaptive scheme to improve the performance of the synthetic control chart. That is, once a non-conforming (NC) sample occurs, we investigate the next L-consecutive samples with larger sample sizes and shorter sampling intervals. We employ a Markov chain model to derive the ARL and the average time to s19na1 (ATS). We also propose a statistical design procedure for determining decision variables. Comprehensive comparative study shows that the proposed control chart is uniformly superior to the original SCC or double sampling (DS) Χ chart and comparable to the EWMA chart in ATS performance.

Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp (형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발)

  • Sin, Minki;Cho, Jang Ho;Woo, Hyun Soo;Kim, Kiyoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

A Study on the Active Noise Control Algorithm for Rreducing the Computation Rime (계산속도를 증가시키기 위한 능동소음제어 알고리즘에 대한 연구)

  • 박광수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.699-703
    • /
    • 1993
  • When the error path can be modeled as a pure delay, an adaptive algorithm for slowly time varying system is proposed to minimize the sound pressure level. This algorithm makes it possible to use the fittered-x LMS algorithm with on-line delay modeling of the error path. Another simple adaptive algorithm for pure tone noise is proposed which eliminates the cross term in the multiple error filtered-x LMS algorithm.

  • PDF

Design of Nonlinear Adaptive Controller using Wavelet Neural Network (웨이브렛 신경회로망을 이용한 비선형 적응 제어기 설계)

  • 정경권;김주웅;엄기환;정성부;김한웅
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.17-20
    • /
    • 2001
  • In this paper, we design a nonlinear adaptive controller using wavelet neural network. The method proposed in this paper performs for a nonlinear system with unknown parameters, identification with using a wavelet neural network, and then a nonlinear adaptive controller is designed with those identified informations. The advantage of the proposed control method is simple to design a controller for unknown nonlinear systems, because we use the identified informations and design parameters are positioned within a negative real part of s-plane. The simulation results showed the effectiveness of proposed controller design method.

  • PDF