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ABSTRACT

Recently, a number of papers on adaptive control scheme
of manipulators are proposed. Slctine and Li [1] showed an

adaptive control scheme for robot manipulator. The controller-

was described in closed form. And later Niemeyer and Slotine
discussed about a computational implementation of the con-
troller in recursive form [2]. Walker proposed another adaptive
control scheme which can be implemented by a recursive-form
controller [4]. Closed-form description is used for the araly-
sis or design of adaptive control systems while recursive-form
realization is used for implementation of the controller. The
relation between the closed-form realization and the recursive-
form one seems to be inadequately referred. Hence, it makes
sense to consider the relation between the closed-form descrip-
tion and the recursive-form one. In this paper, first, we make
a simple derivation of an closed-form dynamics description of
a robot arm from its recursive-form description. And then
we derive the closed-form realization of Walker’s scheme ap-
plied to manipulators having no kinematic loop. We clarify
the difference between the Walker’s scheme and Slotine’s and
evaluate the convergence under the controllers.

1 INTRODUCTION

A difficulty in considering a robot arm control system is
the difference between the closed-form description of the sys-
tem, which is effective for analysis or design of the system, and
recursive-form one for the computational implementation. The
closed-form description has a single equation,which is usually
obtained from Lagrangian formulation and which is very hard
to calculate completely in spite of the resultant simple struc-
ture, particularly when the degree-of-freedom of the robot arm
is large. The recursive-form description has several iterative
equations with respect to each link which is obtained directly
from the Newton-Euler dynamic equation. It can be easily ob-
served that closed-form descrivtion is obtained by composing
the recursive-form equations.

Recently, to make the equations be simple, the spatial no-
tation is used to describe the dynamics of the robot arm re-
cursively {5]. We also use spatial notation in this paper to
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describe the velocity, inertia force and torque etc. A simple
introduction of the spatial notation is given in Appendix.

In section 2, we show the robot arm dynamics in the
recursive-form under the spatial notation and then reduce
them into the closed-form. In section 3, we suminarize some
recent works on adaptive control of manipulators. In section
4, we derived the closed torm of Walker’s scheme and analyze
it.

2 THE ROBOT ARM DYNAMICS

In this paper, we consider the robot arms which has n degree-
of-freedom and no kinematic chain. The robot arm has n +1
links numbered from 0 (base link) to n (end effector) and n
joints numbered so that i-th joint connects (¢ — 1)-th link and

i-th link.

2.1 CLOSED FORM AND RECURSIVE FORM

As discussed in a number of literature, the dynamic equation
of a robot arm is represented in following form.

H{q)d+C(q,9)q+G(q) = 7 —n(q) (1)

where
q E R’H,
H(q) € Rn n
C(q’ q) e R’"X'ﬂ
G(q) € wal
n(@) € Rt

vector of joint variables

positive definite pseudo inertia matrix
Coriolis and centrifugal terms

gravity terms

viscous friction terms

The matrix C(q,q) is not determined uniquely. But for adap-
tive control C(q, q) is taken so that H-2Cis skew-symmetric;
ie.

xT(H -2C)x =0 for ¥x € R*! (2)

The recursive representation of the equation (1) in spatial no-
tation is as follows. [5]

Vi = vieitsig (vo=0) (3
Vi = Vi +v; X8iqi+8G (ag=0) (4)
f. = fip1+La,+v,xIv,+Lg (5)
no= sfi+mn (6)
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where

'g; : joint variable of joint ¢
s;(q) : spatial vector representing i-th joint axis
I;(q) : spatial inertia of link ¢
v; : spatial velocity of link ¢
f. : spatial force acting on the joint ¢
7; : torque or force supplied by i-th actuator
g : spatial gravitational acceleration

(=[o0o000 —9.8]T)

nm; : spatial force representing viscous friction of joint ¢

All the spatial vectors shown above is represented with respect
to the base (link 0) coordinate frame. Note that there are sev-
eral extraordinary operators such as ¢’ (spatial transpose) and
‘x’ (spatial cross operator) in the above notation. For more
details,see Appendix.

2.2 DERIVATION OF RELATION

Now, let us analyze the relation between the closed form (1)
and recursive form (3)-(6). We assemble the equation (3)-(6)
to derive the same structure as equation (1). The equation
(5) has to be modified as follows so that the resultant matrix

corresponding to C(q, q) satisfies the equation (2).

f,= f,‘+1+1.'&,‘+%v.,' xIiv,— -;—(I,V,') XV;— %Iiv,' xv;+1,g (7)
Note that the cross operator x is not entirely equivalent to the
ordinary vector product, so the third term and the forth term
of the left-hand side of (7) make no cancellation. Note also
that the fifth term of the right-hand side of the equation (7)
turns out to be zero.

From equation (3) we obtain

=J(a)q (®)
where
81 g .- 0
Vi . .
v = . € RG1:>-‘1 R J(q) —_ € Rann
Va 0
Sy vt Sy

From equation (4) we obtain

= J(q)a + Vi(q,0)q (9}
where
vixs 0 - 0
V.(q, q) = € Rsnxn
0
V] X 81 Vi X 8y

Note that V, = J. Using equation (6),(7),(8), and (9) we get

= JQU@I(@a+ [(@Vs(a,d) + 3Ci(ad)

—%Cz(q,f'l) - —Cz (q,9)]q+Gi(q)} +7 (10)
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where
si - )
0
J:(q = c RG‘uxGn
0 - 0 s
I(q) = diag(ly,-- )ERG"”'G"
Ci(q,q) = diag(vy x 11, ,vi x 1) € RSO
Ca(q,q) = diag((Zyv1)x, -, (L,v,)x) € RO
Ci(q,q) = diag(l1vyx,- ["v”x)eRG"-Gw
T
Gi{q) = [(Ilg)T (I.,,g)T} ¢ Rnx1

n = diag(m, )

Note that J; is equal to the transpose of J except for the spatial
transpose operation to the spatial vectors.
Comparing equation (1) with (10} we can conclude that

H(q) = J(@l(q)J(q) (11)
Clad) = J@H@Vi(aa)+ 5Cila a(a)
~LCala, @)@ - SCalg. @l (@] (12)

Gla) = Jq)Gi(a) (13)

The matrices H and C given by equation (11) and (12) sat-
isfy the property (2). To see this, we can calculate the matrix
H —2C from (11) and (12) as

H-20=J,CJ (14)

To compute the entries of the matrix we obtain

[

[H-20)= 3

k=mar{iy)

Si(lkvk) X 8 (15)

As s{(I;vy) x s; is a scalar, it is invariant with respect to the
spatial transpose operation.

si{Iyvy) x 8 = (si(Lvy) x 85) = =i {Ivy) xs;,  (16)

It can be simply observed from equation (15),(16) that the
matrix H — 2C is indeed skew-symmetric.

The coefficients of equation (1) H, C, G has following impor-
tant property.

H(q)f + C(q,q)r + G(q) = Y{q,q,r,1)a (17

where r is arbitrary vector which have the same size as q and
a is a constant vector in terms of the robot arm parameters.
Now, let us find the entries of Y of (17) for the convenience of
considering the recursive form. The spatial inertia of one link
has ten parameters, which are six true inertia, three position
components of the center of mass, and mass. let a be composed
of these parameters. We can write

10

L=Y Rja (18)

where a;; is the j-th entry of a with respect to the inertia of
the i-th link and R, € R %" consist of ones and zeros giving
the location of the appropriate parameter within the inertia.



Compared (7) with (10), we can see that the replacement of ¢
and q with r and ¢ between the left-hand side of (1) and that
of (17} is equivalent to following replacement in recursive-form
description. We introduce a new spatial velocity w; as

wi = W_1+8;r; (wy=0) (19)
Wi = Wi+ v X s+ 87 (W =0) (20)
Instead of (7) we take

fi= f.+1+1.v'vi+%vixIiwa—%(IiVi)Xw.'~%I;V¢ xwi+Iig (21)

It can be easily observed that by constructing the closed-
form as above from equations (3), (4), (6), (19), (20), and
(21), the left-hand side of (17) appears at that of the resultant
closed-form equation. From (18) and (21) we obtain

10 1
fi = i+ Z[R_.,‘"V. + =v; X ij"

j=1 2

1 1
_§(Ejv,-) X W; — §ij.- x w; + Rjgla;; (22)

Note that a;; is scalar. By composing equations (3), (4), (6),
(19), (20), and (22) Y(q,q,r,F) and a can be expressed as

Y(q)f!)rvi') =LY (23)

an10 ]T (24)

where Y7 is very complicated 10 x 6n matrix:

8=[<111 @11t Gy c

Y1 o Yim
Y, = . .
Yur - Yiom
. 1 1
Yi; = ij,' + -Z—V,' X R]W,' - §(iji) X W;

1
_Eiji x w; + R;g

3 DIRECT ADAPTIVE CONTROL
SCHEMES

In this section we summarize several works on the adaptive
control of the robot arms relevant to this paper.

3.1 CLOSED-FORM CONTROLLER

Slotine and Li [1] presents a globally stable adaptive con-
troller. This controller is designed in closed form as follows.

Let & denote the estimate of a of (17). We define f], C,é
as the estimates of H,C,G respectively by substitute a for &,
namely

Y(q,q,r,i)a = H(@i + Clq,q)r + G(q) (25)

let qq denote the desired trajectory of q. Note that from
the discussion in Section 2, A(q),C(q,q),G(q) can be made
from H(q),C(q,q),G(q) in the equations (11),(12),{13} re-
spectively by replacing I with / where [ is block diagonal ma-
trix of [;. Thus,

Hq) = JiJ (26)

. . 1. 1. 1.
Clad) = AIVi+ 3010 -5CJ0 - 35C]  (27)
é = Jyél (28)
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where Cl,ég,ég, and él are made from C1,C,,C5 and G; by
replacing I with [.

We further define the virtual reference trajectory q, and the
virtual error s as

4 = a-44q (29)
s = q-4q, (30)
where § = q — qq and A is positive definite symmetric, usually

diagonal, design parameter matrix with main respect to the
rate of convergence of ¢. Note that

il

H(q)4, + C(q,9)a- + G(q)
A(q@)d, +C(a,9)a, + G(a)

Y(q,4,9n4.)a (31)
Y(q,9,4r,4-)a (32)

il

From the above equations we obtain

H(q)a, + C{q,4)4, + G(q) = Y(q,4,4,,4)a (33)

where

H(q) H(q) - H(q)
Clq,q) C(q,q) - Clq,4q)
Gla) = G(q)-Glq)

a = a-a

Now the control law and adaptation law are taken as follows

H(Q)a, +C(q,9)q, + Gla) - Kps  (34)
~I'Y7(q,q,4r,4)s (35)

-
|

o

where Kp and I' are both positive definite symmetric, usually
diagonal, design parameter matrices with main respect to the
rate of convergence of s and that of A respectively. Note that
this controller is designed in closed-form description.

To prove the global stability of this controller, we consider
Lyapunov function candidate

V(t) = ~(sTHs + a"Ta) (36)

B b

The time derivative of V() is obtained using the equations (1),
(33), (34), and (35) as follows

V(t)=-sTKps <0 (37)

The equation (37) indicates the global convergence of s,in other
words,s — 0 as t — oo. From the definition of s, § converge
to the sliding surface

G+Aq=0 (38)

Thus, the adaptive controller defined by (34) and (33) is glob-
ally asymiptotically stable for joint positions. Note that the
equation (37) gives no guarantee of the convergence of a be-
cause V(1) is not a fuuction of a. Hence,this control scheme is
a kind of direct adaptive control scheme.



3.2 RECURSIVE-FORM CONTROLLER

Niemayer and Slotine [2] presented a recursive-form imple-
mentation of the adaptive controller shown in the previous
subsection. The controller is realized as

Vo, = Ve_, +Sig, (39)
Voo = Ve, +Siy, + Vi X 84y, (40)

f,, = £, + %v,- x I}v,l + %v,, x i,vi + %jt"v'.- X v,
+Lv, (41)
= sif, +7% — [Kps): (42)

where I; is the estimate of the spatial inertia of link 7 defined

as
10

il == Z R][l,')
j=1

The equivalence between this and the controller in Section 3.1
can be easily derived by using the results in Section 2.

Walker presented another recursive-form controller [4]. The
control scheme is expressed as

v = Vi — Vy, (43)
f,, = f,,+ Lo, — YV +g) + Vv, X flv.,.l (44)
o= sif, +% (45)

where « is a control gain parameter and the rest is same nota-
tion as Niemayer and Slotine’s. In the next section, this recur-
sive adaptive control scheme is translated into the closed-form
and then evaluated.

4 DERIVATION AND ANALYSIS

In this section, we present the closed-form realization of the
Walker’s controller presented in the previous section. The con-
torl scheme is analyzed and evaluated using the closed form.

By composing the equations (39), (40), (43), (44), (45), the
closed-form controller of Walker’s is derived as

= H(a)d + Cula,4,8,)G + G(q) + 71— vH(q)s  (46)

where
Cu(q,4,4,) = Jf[IV«(q,q)Jr501(q,qr)J(q)

~5Cala.a00(@ - 3Ca(a,a0I(a)

Note that this control scheme is different from Slotine and
Li’s in the dependence of Colioris and centrifugal term matrix
on ¢,. Note also that the feedback gain Kp of this control
depends on q, therefore it is time-varying.

Now, let us evaluate the rate of the convergence of s with
respect to v using following Lyapunov function.

Vi(t) =sTHs (47)
The derivative of V)(t) is expressed as

Vi(t) = —ysT Hs (48)
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(47) and (48) yields
Vi=-1W1 (49)

Thus, the rate of convergence of Vi(t) is directly dominated
by 7. Suppose that we has chosen a time-invariant matrix for
Kp. let k4 be the minimum singular value of Kp and h be the
maximun singular value of H {q). Then following inequalities
are satisfied.

Vi(t) < hilsi? (50)
Vi(t) = —sTKps < ~ky|ls|? (51)
(52)

We can evaluate the rate of convergence of V1 by
. k
< -5 (53)

In this case, the rate of convergence is bounded by k,/h. If
constant matrix is chosen as the feedback gain, we can design
the rate of convergence only in the worst case.

In most cases, it should be better for us to choose the time-
varying feedback gain as Walker's [4], according to the rate of
convergence of V] as the performance index.

5 CONCLUSION

We have utilized the relation between the closed-form de-
scription and recursive-form one of a robot arm dynamics and
the direct adaptive controller. We believe that the advanced
control will be progressed further and further, then the ob-
servation in this paper would reduce the gap between analy-
sis/design and implementation.
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APPENDIX: THE SPATIAL
NOTATION

The spatial notation is much convenient to simplify the dy-
namic equation of rigid bodies. Now, we make a brief tutorial
on the concept of spatial notation, which appears in this pa-
per, such as spatial velocity, spatial force, spatial inertia ,and
so forth. The extraordinary operation such as spatial transpose
and spatial cross operator is also referred to.



In general, spatial notation consists of spatial vectors and
spatial tensors. A spatial vector is 6-dimensional vector which
corresponds to two 3-dimensional vectors. A spatial tensor is
6 x 6 matrix which expresses a transformation between spatial
vectors.

Now, suppose a 3-dimensional space which has origin and
coordinate axes. Let us consider a rigid body in the coordi-
nate frame which has the translational velocity vp and the
rotational velocity w at the point P in the body which is usu-
ally taken at the center of mass. Let r denote the position
vector of P. Then the translational velocity at the origin can
be expressed as

VoO=Vp+r Xw

“

where the operator “x” for 3-dimensional vector is defined as

x 0 -z y
X = z 0 -~z
z -y 0

The rotational velocity at the origin is also w. The spatial
velocity of the rigid body is define as T. Let the
body has the translational momentum p at P (p = mvp) and
the rotational momentum L. The spatial momentum of the
body is defined as [ pT (expT+1LT

Consider the force £ acting on the point P of the rigid body

(o7 vo)

considered above. Consider also the torque 7 acting on the
body. Then the spatial force acting on the body is defined as
[ T (ex )T +7T

The spatial inertia of the rigid body is defined as the trans-
formation from the spatial velocity to spatial momentum; i.e.

m=]v

where m is the spatial momentum, I is the spatial inertia and
v is the spatial velocity of the rigid body.

The dynamic equation of the body which is equivalent to
the Newton-Euler formulation is expressed as

%(I v)="f (54)
The time derivative of spatial vectors is not its component-
wise time derivative.
Suppose a spatial vector a is moving at the velocity ex-
pressed by the spatial velocity v, the time derivative of a is
expressed as

d

pa=vxa
where the spatial cross operator “x”, which is for spatial
vectors, is defined as follows. Suppose a spatial vector b =

T
[ b;r b? ] where both by and by are 3-dimensional vectors.
The cross operator is defined as

b1 by x 0
bx = X =
by bsx  byx
The time derivative of spatial inertia of the rigid body mov-
ing at the velocity v is expressed as
%I =vxI-Ivx
Thus, the dynamic equation (54) becomes

f=Iv+vxliv (55)

The joint axes can be expressed by spatial vectors. In case
the joint type is rotational, if the direction of the axis is rep-
resented by a 3-dimensional unit vector d and the line of axis
pass through a point P, the spatial vector which represents
the joint axis is expressed as [ dT (rxd)T | . For the case
such that the joint type is translational, if the direction of
the axis is represented by a 3-dimensional unit vector d, the
spatial vector which represents the joint axis is expressed as

{ o7 d7T ]T. Once the joint axis is represented by the spatial
vector s, the relative spatial velocity of the rigid bodies con-
nected by the joint is expressed as s¢ where g is called a joint
variable, which is relative angle in rotational case and which is
relative displacement in translational case.

In the spatial notation, there is an extraordinary operation
of spatial transpose. In this paper, we have expressed this
operation as “ .
defined as

The spatial transpose of spatial vector is

r 1
a T T ]
= a
l a ] | 3
where both a and a; are 3-dimensional vectors. The spatial
transpose of spatial inertia is defined as

A B [DT BT

C D| | CT AT
where A, B, C, and D are all 3 x 3 matrices. The spatial
transpose of scalar is an invariant operation.

The important properties of spatial cross operator and spa-
tial transpose are shown below.

a,b : spatial vector
A ¢ scalar
X,Y : spatial tensor
E : spatial tensor which is orthogonal,

(E'E is identity matrix)

dax = (Aa)x
ax+bx = (a+b)x
(ax) = —ax
axb = —-bxa
(Ea)x Eax E'
(axb)x = axbx-bxax
(a') = a
X = X

(Xa) = a'X'
(XY) = v'x'
a’Xb = (a'Xb) =b'X'a

d, . d_,
e
drl__d!
a’ = %



