• Title/Summary/Keyword: Simple X-ray

Search Result 574, Processing Time 0.031 seconds

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

A Case of Temporomandibular Disorder Patient Treated with Additional Hominis Placenta and Bee Venom Herbal Acupuncture (자하거(紫河車), 봉약침(蜂藥鍼)을 가미한 한방치료로 호전된 악관절장애 치험 1예(例))

  • Seo, Bo-Myung;Lim, Seong-Chul;Jung, Tae-Young;Han, Sang-Won;Seo, Jung-Chul
    • Journal of Pharmacopuncture
    • /
    • v.8 no.3
    • /
    • pp.99-105
    • /
    • 2005
  • Objectives : The purpose of this study is to analyze the functional and clinical improvement effect on temporomandibular disorder by additional Hominis Placenta and bee venom herbal acupuncture treatment. Methods : A patient was treated with Hominis Placenta, bee venom herbal acupuncture, simple acupuncture, chiropractic therapy, and herbal medicine. We evaluated the improvement by visual analogue scale(VAS) score, mouth opening range, and X-ray image. Results : The VAS score was significantly decreased and mouth opening range was increased after treatment. X-ray image showed improved change after treatments. Conclusions : We think Hominis Placenta and bee venom herbal acupuncture treatment mainly contributed to the improvement of temporomandibular disorders. Further study is needed for the confirmation of this effect of on temporomandibular disorders.

The Role of Surface Oxide of Metal Nanoparticles on Catalytic Activity of CO Oxidation Unraveled with Ambient Pressure X-ray Photoelectron Spectroscopy

  • Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.132-132
    • /
    • 2013
  • Colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has brought new opportunities to unravel the surface structure of working catalysts. Recent studies suggest that surface oxides on transition metal nanoparticles play an important role in determining the catalytic activity of CO oxidation. In this talk, I will outline the recent studies on the influence of surface oxides on Rh, Pt, Ru and Co nanoparticles on the catalytic activity of CO oxidation [1-3]. Transition metal nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. APXPS studies exhibited the reversible formation of surface oxides during oxidizing, reducing, and CO oxidation reaction [4]. General trend is that the smaller nanoparticles exhibit the thicker surface oxides, while the bigger ones have the thin oxide layers. Combined with the nature of surface oxides, this trend leads to the different size dependences of catalytic activity. Such in situ observations of metal nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications. I will also show that the surface oxide can be engineered by using the simple surface treatment such as UV-ozone techniques, which results in changing the catalytic activity [5]. The results suggest an intriguing way to tune catalytic activity via engineering of the nanoscale surface oxide.

  • PDF

Precipitation of Eu3+ - Yb3+ Codoped ZnAl2O4 Nanocrystals on Glass Surface by CO2 Laser Irradiation

  • Bae, Chang-hyuck;Lim, Ki-Soo;Babu, P.
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • We present a novel and simple method to enable spatially selective $ZnAl_2O_4$ nanocrystal formation on the surface of $B_2O_3$-$Al_2O_3$-ZnO-CaO-$K_2O$ glass by employing localized laser heating. Optimized precipitation of glass-ceramics containing nanocrystals doped with $Eu^{3+}$ and $Yb^{3+}$ ions was performed by controlling $CO_2$ laser power and scan speed. Micro-x-ray diffraction and transmission electron microscopy revealed the mean size and morphology of nanocrystals, and energy dispersive x-ray spectroscopy showed the lateral distribution of elements in the imaged area. Laser power and scan speed controled annealing temperature for crystalization in the range of 1.4-1.8 W and 0.01-0.3 mm/s, and changed the size of nanocrystals and distribution of dopant ions. We also report more than 20 times enhanced downshift visible emission under ultraviolet excitation, and 3 times increased upconversion emission from $Eu^{3+}$ ions assisted by efficient sensitizer $Yb^{3+}$ ions in nanocrystals under 980 nm excitation. The confocal microscope revealed the depth profile of $Eu^{3+}$ ions by showing their emission intensity variation.

Development of an Auto Sample Centering Algorithm at the Macromolecular Crystallography Beam Line of the Pohang Light Source (단백질 결정학 빔 라인에서의 자동 샘플 정렬 알고리즘 개발)

  • Jang, Yu-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.313-318
    • /
    • 2006
  • An automatic sample centering system is underway at the protein crystallography beam line of the Pohang Light Source to improve the efficiency of the crystal screening process. A sample pin which contains a protein crystal is mounted on a goniometer head. Then the crystal should be moved to the center of X-ray beam by controlling the motorized goniometer to obtain diffraction data. Since the X-ray beam is located at the center of the image obtained from the CCD camera when the image of the sample pin is in focus, an auto-focusing algorithm is a very important part in the auto-sample-centering system. However the results of applying several well-known auto focusing algorithms directly to the images are not satisfactory owing to the following factors: misalignment of CCD camera, non-uniform cryo-stream in the background of the image and the supporter of the loop. The performance of an auto-focusing algorithm can be increased if the algorithm is applied to only the loop region identified. Non-uniform cryo-stream and a various illumination condition and a stain, which is shown in the image, are main obstacles to loop region identification. In this paper, a simple loop region identification algorithm, which can solve these problems, is proposed and the effective ness of the proposed scheme is shown by applying the auto-focusing algorithm to the loop region identified.

Preparation and Characterization of CdSe nanoparticle for Solar Cell application (태양전지용 CdSe 나노입자의 합성)

  • Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF

Preparation and characterization of ceria nanofibers obtained by electrospinning

  • Hwang, A.R.;Park, J.Y.;Koh, S.W.;Kang, Y.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.70-70
    • /
    • 2010
  • Cerium oxide nanofibers have been of great interest in fundamental level study. We fabricated polyvinylpyrollidone (PVP) and cerium nitrate nanofibers composite applying a mixed solution of PVP and cerium nitrate hydrate (Ce(NO3)3) with various cerium concentration from 8.87 to 35.5wt% by electrospinning process. Electrospinning method is a simple and cost-effective process to make nanoand submicro nanofiber fabrication. We applied 0.69 kV/cm of electric field between the capillary and a drum collector covered with aluminum foil. Cerium oxide nanofibers were obtained after calcination of PVP/Ce(NO3)3 nanofibers composite at 573, 873 and 1273K, which were chosen by thermal gravimetry analysis. The obtained nanofibers were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS). When the viscosity of the electrospinning solution was high named over 60 cP, only nano and submicro-sized cerium oxide fibers were collected. X-ray photoelectron spectroscopy (XPS) was performed for investigation of the chemical nature of the obtained ceria nanofibers. After we calcined the PVP/ceria nanocomposites, metallic cerium was oxidized to cerium oxide including ceria.

  • PDF

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Preparation of ZnO2 Nanoparticles Using Organometallic Zinc(II) Isobutylcarbamate in Organic Solvent

  • Kim, Kyung-A;Cha, Jae-Ryung;Gong, Myoung-Seon;Kim, Jong-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.431-435
    • /
    • 2014
  • Zinc peroxide nanoparticles ($ZnO_2$ NPs) were prepared by reacting zinc(II) isobutylcarbamate, as an organometallic precursor, with hydrogen peroxide ($H_2O_2$) at $60^{\circ}C$. Polyethylene glycol and polyvinylpyrrolidone were used as stabilizers, which suppressed aggregation of the $ZnO_2$ NPs. Conditions such as concentrations of $H_2O_2$ and the stabilizer were systemically controlled to determine their effect on the formation of nano-sized $ZnO_2$ NPs. The formation of stable $ZnO_2$ NPs was confirmed by UV-vis, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction. The TEM images revealed that polyvinylpyrrolidone-stabilized $ZnO_2$ NPs (diameter, 10-30 nm) were well dispersed in the organic solvent. Quite pure ZnO NPs were obtained from the peroxide powder by simple heat treatment of $ZnO_2$. The transition temperature of $170^{\circ}C$ was determined by differential scanning calorimetry.

An Electrochemical Sensor for Hydrazine Based on In Situ Grown Cobalt Hexacyanoferrate Nanostructured Film

  • Kang, Inhak;Shin, Woo-seung;Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.277-285
    • /
    • 2016
  • There is a growing demand for simple, cost-effective, and accurate analytical tools to determine the concentrations of biological and environmental compounds. In this study, a stable electroactive thin film of cobalt hexacyanoferrate (Cohcf) was prepared as an in situ chemical precipitant using electrostatic adsorption of $Co^{2+}$ on a silicate sol-gel matrix (SSG)-modified indium tin oxide electrode pre-adsorbed with $[Fe(CN)_6]^{3-}$ ions. The modified electrode was characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical techniques. Electrocatalytic oxidation of hydrazine on the modified electrode was studied. An electrochemical sensor for hydrazine was constructed on the SSG-Cohcf-modified electrode. The oxidation peak currents showed a linear relationship with the hydrazine concentration. This study provides insight into the in situ growth and stability behavior of Cohcf nanostructures and has implications for the design and development of advanced electrode materials for fuel cells and sensor applications.