• Title/Summary/Keyword: Simple Shear

Search Result 819, Processing Time 0.028 seconds

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests (CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석)

  • Herrera, Diego;Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.65-75
    • /
    • 2024
  • This study investigates liquefaction-induced settlement through strain-controlled tests using a cyclic direct simple shear device on clean sand specimens. By focusing on the accumulated shear strain, soil density, sample preparation method, and cyclic waveshape, this study attempts to enhance the understanding of soil behavior under seismic loading and its further deformation. Results from tests conducted on remolded samples reveal insights into excess pore water pressure development and post-liquefaction volumetric strain behavior, with denser samples exhibiting lower volumetric strains than looser samples. Similarly, the correlation between the frequency and amplitude variations of the wave and volumetric strain highlights the importance of wave characteristics in soil response, with shear strain amplitude changes, varying the volumetric strain response after reconsolidation. In addition, samples prepared under moist conditions exhibit less volumetric strain than dry-reconstituted samples. Overall, the findings of this study are expected to contribute to predictive models to evaluate liquefaction-induced settlement.

Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as Predicted by Differential Constitutive Equations (단순전단유동에서 미분 구성방정식의 일차원적 불안정거동예)

  • 권영돈
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.192-202
    • /
    • 1995
  • 이연구에서는 유변학 구성방정식이 나타내는 일차원 불안정성의 몇가지 예를 보였 다. 안정성 해석을 위하여 맥스웰형 미분구성방정식 Giesekus, Leonov, Larson 모델을 선택 하였다. 나타난 불안정성은 단순전단유동에서의 정상유동곡석이 무제한적 단수증가성을 위 배할 때 발생한다. 단순전단유동에 부과된 섭동하에서 Giesekus와 Larson 모델이 일정영역 의 무델계수와 전단율속도값에서 불안정 거동은 관성력을 고려하지 않은 경우에도 발생함이 증명되었다. 끝으로 이러한 불안정 거동을 개선하는 몇가지 방법을 Leonv와 Giesekus 모델 에 대하여 제시하였다.

  • PDF

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.

Experimental investigation on the shear capacity of RC dapped end beams and design recommendations

  • Wang, Quanfeng;Guo, Zixiong;Hoogenboom, Pierre C.J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.221-235
    • /
    • 2005
  • In this paper, the shear resistance behaviour of reinforced concrete (RC) dapped end beams is investigated by 24 tests until failure load. The main parameters considered are the dapped end height, the type and effective range to provided the stirrups and the bent form of the longitudinal reinforcement. The failure behaviour of dapped end beams is presented and some conclusions are given. Inclined stirrups and longitudinal bent reinforcement have more influence on the shear capacity than vertical stirrups. Additionally, the shear mechanism of dapped end beams is analysed. Relatively simple semi-empirical equations for shear strength have been derived based on the results of 22 dapped end beams. The predicted results are in close agreement with the experimental ones. Finally, some design suggestions for the ultimate shear strength of dapped end beams are presented.

Ultimate Strength of Composite Beams with Unreinforced Web Opening (유공 합성보의 극한강도식의 제안)

  • 김창호;박종원;김희구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.369-374
    • /
    • 1999
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opening is proposed. In this method, the slab shear contribution at the opening is calculated as the smaller of the shear strength of the slab and the pullout capacity of the shear connectors at the high moment end. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical method. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

  • PDF

Nonlinear Analysis Model of RC Shear Wall Building (철근 콘크리트 벽식 구조물의 비선형 해석모델)

  • 정일영;이영욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.141-148
    • /
    • 1993
  • In this paper, TVLEM is selected for the shear wall model which was proposed by Kabeyasawa and the characteristics of spring models composing TVLEM was studied. In axial stiffness spring model, the horizontal displacements when Kabeyasawa model and simple axial stiffness hysteresis model were used, were closely similar. When the large shear-displacement was occured, stiffness degrading model was more adquate to the shear wall modelling than OOHM. Also for the purpose of modelling the horizontally continuous wall, the seperational method for TVLEM was used. The results of nonlinear analysis by this method were closely similar to experimental results .

  • PDF

A Paradigm for the Viscosity of Fluids

  • Kim, Won-Soo;Chair, Tong-Seek;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 1988
  • A new paradigm for the viscosity of fluid is presented by considering the fact that the viscosity is equal to the shear stress divided by the shear rate. The shear stress is obtained from the sum of kinetic and internal pressures of fluid, and the shear rate is found from the phonon velocity divided by the mean free path of the phonon. The calculated viscosities for various simple substances are in excellent agreements with those of the observed data through the wide temperature range covered both of liquid and gas phase.

Stochastic response analysis of visco-elastic slit shear walls

  • Kwan, A.K.H.;Tian, Q.L.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-394
    • /
    • 1998
  • Slit shear walls an reinforced concrete shear wall structures with purposely built-in vertical slits. If the slits are inserted with visco-elastic damping materials, the shear walls will become viscoelastic sandwich beams. When adequately designed, this kind of structures can be quite effective in resisting earthquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic responses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are derived by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of complex modal analysis. Apart from slit shear walls, this analysis method is also applicable to coupled shear walls and cantilevered sandwich beams. Numerical examples are presented and the results clearly show that the seismic responses of shear wall structures can be substantially reduced by incorporating vertical slits into the walls and inserting visco-elastic damping materials into the slits.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.