The Korean Journal of Rheology,
Vol. 7. No. 3, December 1995 pp. 192-202

(@

CHEMOIRS0M 08 TAWSHAQ AN Eotd HE 0
HAHE

HFRdEm FHAAG AT
(19954 79 189 A%)

Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as
Predicted by Differential Constitutive Equations

Young-Don Kwon

Department of Textile Engineering, Sung Kyun Kwan University
300, Chunchun-dong, Jangan-ku, Suwon 440-746, KOREA
(Received July 18, 1995)

2 o

o] AFAE st LA 0] Uehle gAY BAAA) B g nalch AR HAE fistel HadY v
23w A Giesekus, Leonov, Larson2@e Aelstairt, vjeht Sebgde deaafsolr e Aefssd
3

~
= T
AT ATz Bold AL et £, 7 2de] S4AQ A SRS dE ATsE M A TR
= “blow-up FHle] BAAAL BT of B AL B HE 1A B FFl= w3t ZHHAT EO2
Foh 2otd ASS MAshE 27K HEE Leonovst Giesekus® Dol thate] A4Sttt

Abstract - More examples of one-dimensional dissipative instabilities exhibited by several rheological constitutive e~
quations (CE’s) are illustrated in this paper. Such Maxwell-like differential equations as the Giesekus, the sim-
plest Leonov and the Larson CE's are employed for this stability analysis. The instabilities are associated with the
violation of monotonicity and unboundedness of steady flow curves in simple shear. From the consideration of
standing wave perturbation imposed on the simple shear flow, it is proven that the Giesekus and the Larson
models show a kind of dissipative instability in some values of numerical parameters and the shear rate. Imposing
the step stress loading greater than some critical value also incurs severe “‘blow-up” instability even without in-
ertial terms in the set of equations. At the end, methods of improving such ill-posed behaviors are suggested for
the Leonov and the Giesekus CE’s.

Keywords: Viscoelastic constitutive equation, one-dimensional stability, dissipative stability, Giesekus model, Leo-
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1. Introduction has been frequently observed for large or even

modest values of Deborah numbers. It is thought

In numerical simulation of viscoelastic fluid that the main cause of this instability is bad

flows, degradation of the numerical solution or choice of a constitutive equation (CE) for num-
lack of convergence of computational schemes erical applications (see, e.g. p.314 of Ref. (1]).
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One-Dimensional Dissipative Instabilities in Simple Shear Flow 193

The mathematical instability of rheological
CE’s can be distinguished into two types: (i)
Hadamard and (ii) dissipative. Hadamard ins-
tability, which shows the unboundedly in-
creasing amplitude of short waves as the
wavelength tends to zero. is associated with the
nonlinear rapid response of CE’s, hence it de-
pends on the type of differential operator in the
evolution equation for differential models and
the configuration tensor-stress relation, i.e. the
elastic potential in the hyper-viscoelastic case
{the case where there exists a thermodynamic
potential relation). However, the dissipative ins—
tability which is inherent only in viscoelastic e-
quations, by definition, results from the dis-
sipative terms of CE’s in the case of differential
type.

A number of publications on the Hadamard
stability of viscoelastic CE’s appeared (see e.g.
Ref. (2]). However, no result on the global sta~
bility (the stability for any flow type and any
value of velocity gradient tensor) for the class of
CE’s has been obtained until a series of works
by Leonov et al.(5], and the global Hadamard
stability constraints obtained for the class of
Maxwell-like differential (3) and for the class of
single integral CE’s (4) are the condition for the
strong monotonicity of stress, i.e. the GCN+
condition (for definition, see the section 52 in
Ref. (6]), which is less restrictive. In the paper
(5], the necessary and sufficient condition for
global Hadamard stability is formulated in the
form of algebraic inequality, and thus it seems
that the stability analysis of Hadamard type is
completely resolved for such two broad classes
of CE’s as Maxwell-like quasilinear (linear in
derivatives) differential and factorable single in-
tegral models, which are the only ones in prac-
tical applications.

Results regarding the dissipative instability of
CE’s have been very rare. One-dimensional (1-

D) instability of the Giesekus model within a
certain range of a parameter was reported for
shear flows (7, 8). Those papers showed that
the instability occurs when the numerical para-
meter is greater than 1/2 and shear rate exce-
eds a certain critical value. This type of dis-
sipative instability is related to the decreasing
branch of the steady shear flow curve.

Recently, in the study of dissipative stability
for viscoelastic CE’s several general results
have been reported. In the paper (3], one can
find two theorems proven for the Maxwell-type
CE’s, one of which illustrates positive de-
finiteness of the configuration tensor in some
restricted situation and was first proven by Hul-
sen (9) in a different way. Another theorem
gives a useful sufficient condition for the bound-
edness of variables in the Maxwell-type CE’s,
the satisfaction of which guarantees the dis-
sipative stability also for a limited flow history.
In the case of single integral CE’s, a necessary
and sufficient condition for the boundedness of
variables was also established in Ref.(10).
However, both theorems assume a predefined
strain history, hence whenever mixed stress-
strain history is given, they cannot be applied
to the dissipative stability analysis. The dis-
sipative instability which occurs when stress
history is prescribed, has been demonstrated in
the literature (11).

So far there have been a lot of attempts in the
literature to apply unstable CE’s to real flow in-
stabilities like melt fracture. For example, the
hypothesis of short mémory was employed for
the explanation of these physical phenomena
(12), but it turned out that this instability was
related to the change of type and furthermore
some inconsistency appeared due to the use of
different equations for the basic flow (13). An-
other approach can be found in the work by
Dunwoody and Joseph (14), where they obtain-
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194 Young-Don Kwon

ed stability criteria of shear flows by applying
long wave perturbations to CE’s.

Nevertheless, Hadamard and dissipative in-
stabilities of viscoelastic CE’s are the genetic
flaws incurred by a bad formulation of various
terms in CE’s. It is generally agreed that the
melt fracture is a phenomenon related to real
rubber-like fracture at the die entrance corner
or stick-slip process of polymeric fluids along
the wall. Therefore, this problem has nothing to
do with the unstable behavior of CE's, and it
should be treated as an adhesion (or fracture)
problem of liquid on the wall (or at the corner)
under intensive flow. It can be concluded that
any CE with any type of instability described a-
bove, should be discarded from any further ap-
plication, however well it describes viscometric
data and however deep physical meaning it may
contain. An attempt to apply the unstable beha-
vior of equations to real flow instability would
cause inconsistency with other sets of ex-
perimental data, and this kind of contradiction
has been already revealed in (15].

In the recent work (5], a compilation of sta-

bility analyses is presented. Surprisingly, there
exist only three stable CE’s, which are the upp-
er convected Phan Thien-Tanner CE, the FENE
model and the Leonov class of CE’s under spec-
ified stability constraints.
In this paper, more detailed examples of 1-D dis-
sipative instabilities are illustrated. The ins-
tability of the Larson as well as the Giesekus
CE caused by the decreasing branch of the
steady shear flow solution is proved, even th-
ough the analysis of the Giesekus model was
given in the work (7,8]). In addition, the severe
instability exhibited by the Giesekus, the sim-
plest Leonov and the Larson CE’s in the case of
step shear loading is also demonstrated, while
the result only for the Leonov model was ob-
tained in the paper (11).
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2. Stability Analyses of Constitutive
Equations

As mentioned in the introduction, various
kinds of instability have been revealed in the
numerical modeling of high Deborah number
flows as well as in mathematical analysis of
CE’s. The dissipative instability may happen
even for the Hadamard stable models for which
the common constraint of positive definiteness
of dissipation is satisfied. It is due to a bad for-
mulation of dissipative terms for differential
CE’s. The global criteria for dissipative stability
of viscoelastic CE's are far away from being com-
pletely established. However, in this section one
criterion against distinct dissipative instabilities
is suggested, which is the monotonicity and the
unboundedness of steady flow curves in simple
shear. The main objective of this study is to de-
monstrate some unphysical dissipative in-
stabilities which can occur in CE’s when the
mixed stress-strain history is considered.

Two general classes of CE's are employed at
present for analyzing viscoelastic flows of po-
lymeric liquids. They are of differential and sin-
gle integral types. In this paper, three Maxwell-
like differential CE’s such as the Giesekus, the
simplest Leonov and the Larson models are stu-
died to expose 1-D dissipative instabilities.

Employing the following canonical form:

;HV(C) =0, y(c) =Agd+A c+A, P,

o=-pb+2pc-dF/dc, ¢=de/di—c- Vv—VvTc

D:p~|1(1i/-8F/8<=:) (D

we can represent all three differential CE’s with
a proper specification of F and A/s in Y. Here ¢
is a “configuration tensor ‘§ is the upper con:
vected time derivative of ¢, Vv and Vv are

the velocity gradient tensor and its tran-
sposition, g(g) is the dissipative term, an iso-
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tropic tensor function of ¢, 0 is the stress tensor,
p is an isotropic pressure;, §_ is the unit tensor, p
is the density, F is the elastic potential, and D
is the dissipation.

Details of the specific models are as follows:
(i) the Giesekus model (16, 17)

o=-pS+Ge, Ag=—(1-0)/6, A;=(1-2a)/6,

A,= /8, F=(G/2p) (1,-3),

D =(G/26){, —3+a(tc2 -2, +3)}, (0sa<1), (2)
(ii) the simplest Leonov model (18]

o=-pd+Ge, Ay=-(26)", A=(L,-1,)/68

Ay=-Ay, F=(G/2p)(1,-3),

D =(G/120){212+1,1,-61,-9}, 3)
(iii) the Larson model (19)

0=-pb+Gc/B(ly), Ag=-B(1,)/6, A =-A,,

A,=0, F=(3G/2p8)1nB(l,), D=(G/20)(,-3),

B(I))=1+(&3)(1;-3), (0<&<1). 4

Here G is the shear modulus, 0 is the relaxation
time, I, =tre, I, = trg‘l, and o and & are num-
erical nonlinear parameters.

2.1 Simple shear flow

In this type of flow, the matrices of the velocity
gradient and configuration tensors for all three
differential CE’s are of the form:

000 €y € 0
Vv=7y|100/ c=lc;cp 0 (5)
o 000, |0 01

Here :yis the shear rate, and the common vis—
cometric coordinate system is employed.
the Giesekus and the Leonov models

In the Giesekus model

dcyy

—+a(ch+el)+(1-2a) ¢ +o—1=2IT,,,

ot

o
—c%2~+a(c122+c222)+(1—2a)<>22+a—1 =0,

Jt

ac

—:2"'8012(012*'%2—2)*'012:rczz. 6)
ot

A O; A 0y — O

0'=—Gl—2‘=c12, N; = HG 2 =C11—Cx,

A Gy — O

N. =—22—ﬁ=(‘22—1‘ (7N

2 G
When o= 1/2, egs.(6) with (7) become identical
to the relations for the simplest Leonov CE. In
this case, the first integral of the set (6) exists,
which follows from the condition of in-
compressibility detc=1. Then one of the e-
quations in the set, say the first one of egs.(6),
can be replaced by the finite equation,

¢ =( 1+C122)/022~

the Larson model
It is represented by

acil +B(c~1) =2y, cp=1,

ot

d
“2 |\ Bep,=T, B=1+2 (cy-1), ®)
at 3

o=c;/B, N;=(c;;—1)/B, N,=0. (9

In eqs.(6)~(9), the dimensionless variables £ =
t/6 and T = 6y are introduced, and stress com-
ponents are scaled by the elastic modulus G.

In the steady shear flow, all rheological vari-
ables can be expressed through the quantity cp,.
the Giesekus and the Leonov models

1

Ch1 = 35(2a—1+ \11—4a2c122+8arc12),
1 57

Cyp= %(2a_1i 1_4a2C122),

oc,[14(20-1 WI-40Pc7 |
1—'_
(1-200) (1 F \1-402c%,) - 202(c%,-1)

The upper branch solution is valid for the con-
dition @<1/2 or T<(20-1)>. When @)1/2 and also
I(20-1)? the Giesekus CE possesses the lower
branch solution. The dimensionless flow curves &
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Fig. 1. Dimensionless shear stress of the Giesekus model
or the Leonov model (a=1/2) plotted versus di-
mensionless shear rate in steady simple shear
flow.

(T) are shown in Fig.l, and have the following
features. When @<1/2, the shear stress is mono-
tonically increasing and bounded by the value (o
L1)¥2 When o)1/2, the shear stress exhibits a
maximum equal to (20)™ at shear rate I'=(20-1)"
and then decreases to a value of (1-0)/o with T
increasing. When o = 1/2, the upper branch solu-
tion of eq.(10) is related to the simplest Leonov
model, of which the flow curve is depicted in Fig.
1 for the case of o= 1/2, and it shows the mono-
tonically increasing but bounded (by 1) shear
stress with shear rate growing. These results
are consistent with those presented in the cited
papers by Giessekus (16,17, Yoo and Choi (20],
Schleiniger and Weinacht (7. 8], and Leonov et
al. (21].

the Larson model

ey =142c%, I'=(2&%/3+1)cy,,

S S ... "N PO
C282/3+1° 1 2&E/3+1° 0 T

The dimensionless flow curves in Fig. 2 cal-
culated for various values of the parameter &,
are quite similar to those for the Giesekus model

g, A 7T A A3 E, 199
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Fig. 2. Dimensionless shear stress of the Larson model
plotted versus dimensionless shear rate in stea-
dy simple shear flow.

with a)1/2. Here the decreasing branches of
flow curves exist for any &)0 and the shear
stress achieves a maximum value equal to

V3/(8E) at I'=V6/¢.

2.2. Instability of decreasing flow curves in
plane Couette flow

It is evident that the decreasing branches of
flow curves for the Giesekus CE with ®)1/2 and
the Larson CE with any £)0 are unstable. Never-
theless, neither linear stability analyses nor
straightforward numerical calculations of start-
up inertialess flows for all models, with constant
values of T' corresponding to the decreasing
branches, showed any instability. It is mathemat-
ically illustrated in this section for the Giesekus
and the Larson CE’s that the inertia term prom-
inently influences those 1-D instabilities.

The equation of motion p(dv/dt) =V - ¢ com-
bined with CE’s (2) and (4) yields in the plane
Couette flow

ac,,
3 . for the Giesekus model
u
Rp—,\ = 3612 acn ( 12)
dt B"&—y —B*2§c128— for the Larson model
y

Here u is the dimensionless velocity scaled by
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the velocity V of a moving plate, y is the di-
mensionless coordinate variable across the gap

scaled by the gap thickness h, B=1+&(ci-1)/3,

the dimensionless steady state shear rate I’

and R are given by I’ = 6V/h and R=ph%/(G6?).
Now consider infinitesimal 1-D disturbances

of standing waves imposed on steady state solu-

tions as

u=u’+ébu= u°+2ﬁnexp(vAvn/t\)sin(n7ry),
r=r'+4r= 1“021 +9u/dy),

{encn e} ={cfcgel }+{ 8y, 8y &y},

{6, &,y &} = ;{Euﬁnzu }a- exp (W, 1) - cos (a7y).(13)

Here u’ is the dimensionless steady velocity with-
out disturbances, ¢’ is a steady state solution
of ¢y obtained in eqs.(10) and (11), u, and W,
are the infinitesimal amplitude of 8u and the di-
mensionless frequency of the disturbing waves
scaled by 6 in the n-th Fourier mode, and ¢; is
the infinitesimal amplitude of disturbances ¢,
hence for the Larson model 8¢, =0 and ¢y = 1.
Then, taking only one mode of disturbing
waves, substituting egs.(13) into egs.(12) and
considering only the first order terms with

respect to infinitesimal disturbances, we arrive

at
— nw — .
u=- —c¢y;  for the Giesekus model,
RIPw
— T |- =
u=- . Ca— 3];(2,"11
RI°wB?

for the Larson model, (14)

where B®=1+&(c’-1)/3, and for the simplicity
of notation, the subscript n for the Fourier
mode is reserved. Substituting egs.(13) into egs.
(6) or (8) with the aid of eqs.(14) and again con-
sidering only the remaining highest order terms
produce in a matrix form the following relations
between the amplitudes:

ay; 3 ay, Eu 0
2, a8, a,|-|c,|=|0| for the Giesekus model,
|21 20 35| [c,| |0

o - {0] L del. (15)
by by | e | |0 for the Larson model.

Here an=\§12+ (ot —20+ Dw, a,=0, a,=
2(acf2~I°)€r+2(nfc Zcfz/R, ay=0, 322=\§,+2acgz_
2041, a, =200, 2, =0ocw, a,=(0cl,~I")W, a,=w +
(o, + ol 200+ 1) w+@mPcd/R, and by =w +

2(nmy &(cp, P by = —2T%+ 2(nmyc),

2B 1)w—
( w 3RB% RB°

by = oo w2 po s 00
3 3R(B%? RB?

Nontrivial solutions of c; do exist, if the de-
terminants of two matrices (a;) and (b;] vanish.
Therefore, the vanishing determinants result in
the following fourth order polynomial with
respect to nonzero W for both the CE’s under
study:

Ag+AW+AW + AW +W =0, (16)

Here the coefficients Ais have awkward forms
composed of steady state solutions and model
parameters. The stability of basic steady state
solutions requires the real part for all roots of %
to be negative. In this case, we employ the
Hurwitz theorem, which states that the fol-
lowing inequalities are necessary and sufficient
for real parts of all roots to be negative:

Ao)O A1 > 0, AlAz_AoAs > 0.
ADATAASA)O. amn

The use of only the first two inequalities in (17)
as necessary conditions of stability is enough for
our further analyses.

the Giesekus model

The first of inequalities in (17) has a form of
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Ag= i(—nz@o%i—[\/2+ 8al'c 20— 11Z)
—(2acf92:| >0 (18)

where 7 = 1-4(0c;)* R is a positive parameter
shown in egs.(12), and T° is related to e
through egs.(10). The upper branch of (18) is
valid for the conditions @<1/2 or I'< (20-1)7
and the lower branch is for the case of a)1/2
and also I') (20-1) Tt can be readily seen that
the square-bracketed term in (18) is always po-
sitive. Therefore, the lower branch case of ine-
quality (18) violates the necessary condition for
stability.

the Larson model

The first two inequalities of (17) are represent-
ed as

A= 28(nmd,)? [1_ (nmy? ]>0

RB? 3R(B%)?
A, =B° [% —wé(cfz)z} >0,

or wTé(cfz)2<—3%3:)—2<l, (19)
where in egs.(11) we see that c’, is mono-
tonically increasing with respect to I°, and B’ is
shown in egs.(14). After reaching the maximum
at T°=V6/€ or at c%,=\3/(28), 8 decreases but
12’ increases, hence the inequality (19) is again
violated in the decreasing branch of solutions.

Thus, using this method, we proved that the
solutions corresponding to the decreasing bran-
ches of the flow curves are unstable when the
inertia term is taken into consideration. These
unstable branches occur for the Giesekus model
with a)1/2 and I(20-1)* and for the Larson
model with 0<E<1 and I°)»V6/E The result ob-
tained for the Giesekus model corresponds to a
result by Schleiniger and Weinacht (7).

2.3. Instability in creep shear flow

#Hg, A7 A A 3E, 19%

As mentioned previously, all three models have
a common characteristic of boundedness of stea-
dy shear stress. A more severe type of 1-D in-
stabilities in shear flow incurred by this bound-
edness can be manifested even in inertialess ap-
proximation. If the step stress, greater than the
achievable maximum stress, is applied for each
models, there exists a ‘blow—up instability,
which means the solution of the start-up problem
for the shear rate T, goes to infinity within a fin-
ite time. This type of instability is illustrated by
solving a step stress problem for the above-men-
tioned three differential models.

The solutions (10) and (11) for steady shear
flow show that the shear stresses have either a
maximum value or a certain upper bound 8", de-
pending on the numerical parameters o or € of
the CE’s. The values of 8™ for three differential
CE'’s under study are

. 1/(2a) for the Giesekus CE
o= 1 for the Leonov CE (20)

\3/(8) for the Larson CE.

Now, we consider the solution of CE’s (6)~(9)

under the condition of a step stress

o=o*H(}), o*> " (21)

where H(f) is a Heaviside step function.
the Giesekus model

In this case, egs.(6) result in the following set
of equations:

d¢y; _20(8_*)2c11+c22—2+1/a
a? Cx

(1-20)c;+a—-1=0,

+a{c121+(3*)2} +

dbat [1 - 200(8*)2} -tan(bot)

022_ A,
2bo+tan(bat)
A A Cptep—2+1/a
)= o*&l)+ oo 122/ %Zczz . (22)
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Fig. 3. (a) Blow-up instability of various rheological variables exhibited by the Giesekus model in creep shear flow (2=0.3).
{b) Blow-up instability of various rheological variables exhibited by the Giesekus model in creep shear flow (2=0.5).
(c) Blow-up instability of various rheological variables exhibited by the Giesekus model in creep shear flow (@=0.7).
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Fig. 4. Blow-up instability of various rheological vari-
ables exhibited by the Leonov model in creep

shear flow.
25 T T T T T
1: ¢=0.3
2: £=05
oo | 3 ¢=0.7 |
o*=1.1550

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 5. Blow-up instability of dimensionless shear rate
exhibited by the Larson model in creep shear
flow.

Here 8(1) is a Dirac delta function. For sev-
eral values of a parameter @, by solving num-
erically the above equations, the severe ins-
tability is demonstrated in Fig. 3, which shows
clearly that the solution goes to infinity in a fin-

ite time.

38 A 7T A A3 E, 199

the Leonov model
The case of =1/2 in eqs.(6) under the con-
stant stress (21) yields an explicit solution

_1 A
e = (24b2) 1+ tan(b:/?.) ’
1-b-tan(bt/2)

__1-b-tan(bt/2)
1+b-tan(bt/2)

A A \[ 2 -1 % 2
1'(t)=0'*5(t\)+ I;b e+h) 1+btan(bt/2) 1

1-b-tan(b1/2)

(23

The above solution is plotted in Fig.4 against
a dimensionless time.
the Larson model
For this model, we meet two separate cases. One
of them corresponds to the case when the applied
stress is in the range of V3/(8&)<8*<V3/(48),
which yields

8011_3[

i ¢ 1 1—25(8*)2[“5(%-1)/3}/3

1+&(c;-1)73

[1 +§(cn—1)/3:|2} ep= [1 +§(cn—1)/3]8*,

I =b-&0)+ o

1+&cy—1)/3
1- 25(8*)2[1 +&cy - 1)/3]/3 '

ct=0"=b2+1, c,,(=0"=b, (24)

where the solution of the dimensionless shear
rate is computed in Fig. 5 for several values of &.
On the other hand, when 6*>\/W, there ex—
ists no solution.

Through egs.(22)~(24), the supercriticity con-
stant b for each CE is

J(?)"‘)2—(;\)’“)2 for the Giesekus and the Leonov
= (25)
[1— N1-4(6*)73 [/(2£6%/3) for the Larson model.
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All three differential CE's under study showed
a severe blow-up instability or sometimes even
non-existence of solutions presented in eqgs.(22)~
(24) or in Figs. 3~5. Evidently, this pathological
behavior has no physical sense, hence under
large shear stress the description of high elastic
phenomena demonstrated by these single-mode
models is unphysical and has to be improved.

3. Discussion

In this work, the dissipative type of 1-D ins-
tability for three Maxwell-like differential CE’s
such as the Giesekus, the simplest Leonov and
the Larson models was discussed in order to in-
vestigate the fundamental properties of viscoe-
lastic CE's. However, the global analysis of dis-
sipative stability is far away from being com-
pleted, if it is generally possible. Nevertheless,
one distinct pattern of dissipative instability has
been revealed, which is related to the mono-
tonically and unboundedly increasing steady flow
curves in simple shear.

In the steady simple shear flow, the Giesekus
and the Larson models possess the decreasing
branch of flow curves. The instability of the
Giesekus CE related to this decreasing branch
was first proved by Schleiniger and Weinacht (7,
8]. In this paper, the instability of the Larson
as well as the Giesekus CE is shown in a un-
ified form, and the result for the Giesekus
model coincides exactly with the previous one
(7).

Regarding the boundedness of steady flow
curves which exists for all three models, the sev-
ere instability was predicted in the paper (11],
and it is illustrated here in detail in the case of
step loading. This instability appears in a blow-
up type even without the inclusion of inertia
terms.

There is a tough problem as to how to dis-

tinguish the unstable behavior caused by poor
modeling of CE’s and the observed physical in-
stabilities which those equations should also
describe. However, the long history of various
branches of continuum mechanics and physics
teaches us that occurrence of an ill-posedness
in 1-D situations without such important phy-
sical reasons as phase transitions, is a sign of
inappropriateness in the CE’s. Thus, we should
treat the dissipative instability demonstrated in
this paper as being associated not with the real
instabilities observed in flows of polymer melts,
but rather with the improper modeling of terms
in CE’s, and it has to be removed from the
further consideration. In the numerical simu-
lation of complex flows with unstable CE's,
when the flow rate becomes high enough, oc-
currence of various unphysical instabilities is
inevitable. Even in the range of the moderate
Deborah number, the existence of singular
points in flow geometry such as the corner
singularity in die entrance region, is sufficient
to spoil the whole numerical procedure.

In the case of the simplest Leonov model, we
can improve its behavior in several ways. The
simplest way is to add a small Newtonian viscous
term in the third of egs.(1), but it will prevent
the CE from the instantaneous elastic response.
Next, we can modify the elastic potential F to
satisfy the constraint of convexity already sug-
gested in the original paper (18). Finally, the
dissipative term can be replaced by the other
stable functional form within the category of the
general Leonov class of CE’s (18).

For the Giesekus CE, the first way of im-
provement can be applied only in the case of 0<
a<1/2. In addition, the second method is also a-
vailable for the general class of the Giesekus
CE’s. However, for the Larson model based on
the molecular theory, no stabilizing procedure
has been found so far.
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