• Title/Summary/Keyword: Simple Sequence Repeat

Search Result 197, Processing Time 0.029 seconds

High-Throughput Development of Polymorphic Simple Sequence Repeat Markers Using Two Whole Genome Sequence Data in Peucedanum japonicum

  • Lee, Junki;Joh, Ho Jun;Kim, Nam-Hoon;Lee, Sang-Choon;Jang, Woojong;Choi, Beom Soon;Yu, Yeisoo;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2017
  • Resource plants are important and have strong potential for a variety of utilities as crops or pharmaceutical materials. However, most resource plants remain wild and thus their utility for breeding and biotechnology is limited. Molecular markers are useful to initiate genetic study and molecular breeding for these understudied resource plants. We collected various wild collections of Peucedanum japonicum which is indigenous resource plants utilized as oriental medicine and leafy vegetables in Korea. In this study, we produced two independent whole genome sequences (WGSs) from two collections and identified large scale polymorphic simple sequence repeat (pSSR) based on our pipeline to develop SSR markers based on comparison of two WGSs. We identified a total of 452 candidate pSSR contigs. To confirm the accuracy and utility of pSSR, we designed ten SSR primer pairs and successfully applied those to seven collections of P. japonicum. The WGS and pSSR candidates identified in this study will be useful resource for genetic research and breeding purpose for the valuable resource plant, P. japonicum.

Complete Chloroplast DNA Sequence from a Korean Endemic Genus, Megaleranthis saniculifolia, and Its Evolutionary Implications

  • Kim, Young-Kyu;Park, Chong-wook;Kim, Ki-Joong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.365-381
    • /
    • 2009
  • The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast MatK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculifolia to Trollius chosenensis Ohwi.

Genomic Distribution of Simple Sequence Repeats in Brassica rapa

  • Hong, Chang Pyo;Piao, Zhong Yun;Kang, Tae Wook;Batley, Jacqueline;Yang, Tae-Jin;Hur, Yoon-Kang;Bhak, Jong;Park, Beom-Seok;Edwards, David;Lim, Yong Pyo
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2007
  • Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa.

Identification of Pleurotus ostreatus cultivars with the application of multiplex-simple sequence repeat markers (Multiplex SSR마커를 이용한 느타리(Pleurotus ostreatus) 품종 판별)

  • Choi, Jong In;Jung, Hwa Jin;Na, Kyeong sook;Oh, Min-Ji;Kim, Min-Keun;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.76-80
    • /
    • 2021
  • To develop a method for the differentiation of Pleurotus ostratus cultivars, the multiplex-simple sequence repeat (SSR) primer set based on the SSRs obtained from whole genomic DNA sequence analysis was designed with two polymerase chain reaction (PCR) primer sets. These SSR primer sets were employed to distinguish 10 cultivars and strains. Twenty polymorphic markers were selected based on the genotyping results. PCR with each primer produced 1-4 distinct bands ranging in size from 150 to 350 bp, which was within the expected range. However, since a sole SSR marker was unable to detect polymorphisms in every cultivar, multiplex PCRs with composite PCR primer sets were employed. The multiplex primer, "166+115," completely discriminated 12 cultivars and strains with 40 loci, which were 12 more than the simple arithmetic addition of each locus of the primers 115 and 166. These results might be useful to provide an efficient method for the differentiation of P. ostreatus cultivars with separate PCRs for the quality control of spawn and protection of breeders' rights.

Comparative Analysis of Chloroplast Genome of Dysphania ambrosioides (L.) Mosyakin & Clemants Understanding Phylogenetic Relationship in Genus Dysphania R. Br.

  • Kim, Yongsung;Park, Jongsun;Chung, Youngjae
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.644-668
    • /
    • 2019
  • Dysphania ambrosioides (L.) Mosyakin & Clemants which belongs to Chenopodiaceae/Amaranthaceae sensu in APG system has been known as a useful plant in various fields as well as an invasive species spreading all over the world. To understand its phylogenetic relationship with neighbour species, we completed chloroplast genome of D. ambrosioides collected in Korea. Its length is 151,689 bp consisting of four sub-regions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR) regions. 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs) were annotated. The overall GC content of the chloroplast genome is 36.9% and those in the LSC, SSC and IR regions are 34.9%, 30.3%, and 42.7%, respectively. Distribution of simple sequence repeats are similar to those of the other two Dysphania chloroplasts; however, different features can be utilized for population genetics. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. Phylogenetic tree presents that D. ambrosioides occupied a basal position in genus Dysphania and phylogenetic relation of tribe level is presented clearly with complete chloroplast genomes.

Development of Doubled-haploid Population and Construction of Genetic Map Using SSR Markers in Rice (벼의 Doubled-haploid 집단육성과 SSR 마커를 이용한 유전자 지도작성)

  • Kim, Kyung-Min;Nam, Wu-Il;Kwon, Yong-Sham;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • A doubled-haploid (DH) population was developed through anther culture of F$_1$ plants obtained from a cross between a japonica cultivar, 'Nagdongbyeo', as male parent and a indica cultivar, 'Samgangbyeo', as female parent. Segregation modes for plant length, culm length, panicle length, third internode length, and days to heading in the DH lines showed nearly normal distribution with wide range of variation. A molecular map with 136 simple sequence repeat (SSR) markers was constructed using the DH population. The total map distance was 1,909 cM and the average interval of marker distance was 14 cM.

Population Structure of Mungbean Accessions Collected from South and West Asia using SSR markers

  • Kabir, Khandakar Md. Rayhanul;Park, Yong Jin
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.14-22
    • /
    • 2011
  • In this study, 15 simple sequence repeat (SSR) markers were used to analyze the population structure of 55 mungbean accessions (34 from South Asia, 20 from West Asia, 1 sample from East Asia). A total of 56 alleles were detected, with an average of 3.73 per locus. The mean of major allele frequency, expected heterozygosity and polymorphic information content for 15 SSR loci were 0.72, 0.07 and 0.33 respectively. The mean of major allele frequency was 0.79 for South Asia, and 0.74 for West Asia. The mean of genetic diversity and polymorphic information content were almost similar for South Asian and West Asian accessions (genetic diversity 0.35 and polymorphic information content 0.29). Model-based structure analysis revealed the presence of three clusters based on genetic distance. Accessions were clearly assigned to a single cluster in which >70% of their inferred ancestry was derived from one of the model-based populations. 47 accessions (85.56%) showed membership with the clusters and 8 accessions (14.54%) were categorized as admixture. The results could be used to understanding the genetic structure of mungbean cultivars from these regions and to support effective breeding programs to broaden the genetic basis of mungbean varieties.

Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis

  • Kim, Serim;Jeong, Ji Hee;Chung, Hee;Kim, Ji Hyeon;Gil, Jinsu;Yoo, Jemin;Um, Yurry;Kim, Ok Tae;Kim, Tae Dong;Kim, Yong-Yul;Lee, Dong Hoon;Kim, Ho Bang;Lee, Yi
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • In this study, we developed 15 novel polymorphic simple sequence repeat (SSR) markers by SSR-enriched genomic library construction from Codonopsis lanceolata. We obtained a total of 226 non-redundant contig sequences from the assembly process and designed primer sets. These markers were applied to 53 accessions representing the cultivated C. lanceolata in South Korea. Fifteen markers were sufficiently polymorphic, and were used to analyze the genetic relationships between the cultivated C. lanceolata. One hundred three alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. By cluster analysis, we detected clear genetic differences in most of the accessions, with genetic distance varying from 0.73 to 0.93. Phylogenic analysis indicated that the accessions that were collected from the same area were distributed evenly in the phylogenetic tree. These results indicate that there is no correlative genetic relationship between geographic areas. These markers will be useful in differentiating C. lanceolata genetic resources and in selecting suitable lines for a systemic breeding program.

Genetic diversity assessment of lily genotypes native to Korea based on simple sequence repeat markers

  • Kumari, Shipra;Kim, Young-Sun;Kanth, Bashistha Kumar;Jang, Ji-Young;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.158-164
    • /
    • 2019
  • Molecular characterization of different genotypes reveals accurate information about the degree of genetic diversity that helps to develop a proper breeding program. In this study, a total of 30 EST-based simple sequence repeat (EST-SSR) markers derived from trumpet lily (Lilium longiflorum) were used across 11 native lily species for their genetic relationship. Among these 30 markers, 24 SSR markers that showed polymorphism were used for evaluation of diversity spectrum. The allelic number at per locus ranged from 1 at SSR2 locus to 34 alleles at SSR15 locus, with an average of 11.25 alleles across 24 loci observed. The polymorphic information content, PIC, values ranged from 0.0523 for SSR9 to 0.9919 for SSR2 in all 24 loci with an average of 0.3827. The allelic frequency at every locus ranged from 0.81% at SSR2 locus to 99.6% at SSR14 locus. The pairwise genetic dissimilarity coefficient revealed the highest genetic distance with a value of 81.7% was in between L. dauricum and L. amabile. A relatively closer genetic distance was found between L. lancifolium and L. dauricum, L. maximowiczii and L. concolor, L. maximowiczii and L. distichum (Jeju), L. tsingtauense and L. callosum, L. cernuum and L. distichum (Jeju ecotype), of which dissimilarity coefficient was 50.0%. The molecular fingerprinting based on microsatellite marker could serve boldly to recognize genetically distant accessions and to sort morphologically close as well as duplicate accessions.

Development of Reproducible EST-derived SSR Markers and Assessment of Genetic Diversity in Panax ginseng Cultivars and Related Species

  • Choi, Hong-Il;Kim, Nam-Hoon;Kim, Jun-Ha;Choi, Beom-Soon;Ahn, In-Ok;Lee, Joon-Soo;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • Little is known about the genetics or genomics of Panax ginseng. In this study, we developed 70 expressed sequence tagderived polymorphic simple sequence repeat markers by trials of 140 primer pairs. All of the 70 markers showed reproducible polymorphism among four Panax species and 19 of them were polymorphic in six P. ginseng cultivars. These markers segregated 1:2:1 manner of Mendelian inheritance in an $F_2$ population of a cross between two P. ginseng cultivars, 'Yunpoong' and 'Chunpoong', indicating that these are reproducible and inheritable mappable markers. A phylogenetic analysis using the genotype data showed three distinctive groups: a P. ginseng-P. japonicus clade, P. notoginseng and P. quinquefolius, with similarity coefficients of 0.70. P. japonicus was intermingled with P. ginseng cultivars, indicating that both species have similar genetic backgrounds. P. ginseng cultivars were subdivided into three minor groups: an independent cultivar 'Chunpoong', a subgroup with three accessions including two cultivars, 'Gumpoong' and 'Yunpoong' and one landrace 'Hwangsook' and another subgroup with two accessions including one cultivar, 'Gopoong' and one landrace 'Jakyung'. Each primer pair produced 1 to 4 bands, indicating that the ginseng genome has a highly replicated paleopolyploid genome structure.