DOI QR코드

DOI QR Code

Development of Reproducible EST-derived SSR Markers and Assessment of Genetic Diversity in Panax ginseng Cultivars and Related Species

  • Choi, Hong-Il (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences) ;
  • Kim, Nam-Hoon (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences) ;
  • Kim, Jun-Ha (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences) ;
  • Choi, Beom-Soon (National Instrumentation Center for Environmental Management, Seoul National University College of Agriculture and Life Sciences) ;
  • Ahn, In-Ok (Natural Resources Research Institute, R&D Headquarters, Korea Ginseng Corporation) ;
  • Lee, Joon-Soo (Natural Resources Research Institute, R&D Headquarters, Korea Ginseng Corporation) ;
  • Yang, Tae-Jin (Department of Plant Science, Research Institute for Agriculture and Life Sciences, Seoul National University College of Agriculture and Life Sciences)
  • Received : 2011.02.15
  • Accepted : 2011.07.29
  • Published : 2011.12.26

Abstract

Little is known about the genetics or genomics of Panax ginseng. In this study, we developed 70 expressed sequence tagderived polymorphic simple sequence repeat markers by trials of 140 primer pairs. All of the 70 markers showed reproducible polymorphism among four Panax species and 19 of them were polymorphic in six P. ginseng cultivars. These markers segregated 1:2:1 manner of Mendelian inheritance in an $F_2$ population of a cross between two P. ginseng cultivars, 'Yunpoong' and 'Chunpoong', indicating that these are reproducible and inheritable mappable markers. A phylogenetic analysis using the genotype data showed three distinctive groups: a P. ginseng-P. japonicus clade, P. notoginseng and P. quinquefolius, with similarity coefficients of 0.70. P. japonicus was intermingled with P. ginseng cultivars, indicating that both species have similar genetic backgrounds. P. ginseng cultivars were subdivided into three minor groups: an independent cultivar 'Chunpoong', a subgroup with three accessions including two cultivars, 'Gumpoong' and 'Yunpoong' and one landrace 'Hwangsook' and another subgroup with two accessions including one cultivar, 'Gopoong' and one landrace 'Jakyung'. Each primer pair produced 1 to 4 bands, indicating that the ginseng genome has a highly replicated paleopolyploid genome structure.

Keywords

References

  1. Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci 2001;16 Suppl:S3-S5. https://doi.org/10.3346/jkms.2001.16.S.S3
  2. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  3. Choi KT, Kim YT, Kwon WS. Present status in development of new ginseng varieties. Korean J Ginseng Sci 1992;16:164-168.
  4. Lee JS, Lee SS, Lee JS, Ahn IO. Effect of seed size and cultivars on the ratio of seed coat dehiscence and seedling performance in Panax ginseng. J Ginseng Res 2008;32:257-263. https://doi.org/10.5142/JGR.2008.32.3.257
  5. Artiukova EV, Kozyrenko MM, Reunova GD, Muzarok TI, Zhuravlev IuN. Analysis of genomic variability of planted Panax ginseng by RAPD. Mol Biol (Mosk) 2000;34:339-344.
  6. Kim CK, Choi HK. Genetic diversity and relationship in Korean ginseng (Panax schinseng) based on RAPD analysis. Korean J Genet 2003;25:181-188.
  7. Ma XJ, Wang XQ, Xu ZX, Xiao PG, Hong DY. RAPD variation within and among populations of ginseng cultivars. Acta Bot Sin 2000;42:587-590.
  8. Ha WY, Shaw PC, Liu J, Yau FC, Wang J. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 2002;50:1871-1875. https://doi.org/10.1021/jf011365l
  9. Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KW. Identification of new microsatellite markers in Panax ginseng. Mol Cells 2007;24:60-68.
  10. Ma KH, Dixit A, Kim YC, Lee DY, Kim TS, Cho EG, Park YJ. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv Genet 2007;8:1507-1509. https://doi.org/10.1007/s10592-007-9284-4
  11. Van Dan N, Ramchiary N, Choi SR, Uhm TS, Yang TJ, Ahn IO, Lim YP. Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv Genet 2010;11:1223-1225. https://doi.org/10.1007/s10592-009-9924-y
  12. Choi DW, Jung J, Ha YI, Park HW, In DS, Chung HJ, Liu JR. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 2005;23:557-566. https://doi.org/10.1007/s00299-004-0845-4
  13. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 2003;22:224-230. https://doi.org/10.1007/s00299-003-0678-6
  14. Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 2006;25:599-606. https://doi.org/10.1007/s00299-005-0095-0
  15. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 2010;37:3465-3472. https://doi.org/10.1007/s11033-009-9938-z
  16. Nagaraj SH, Gasser RB, Ranganathan S. A hitchhiker's guide to expressed sequence tag (EST) analysis. Brief Bioinform 2007;8:6-21.
  17. Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol 2005;23:48-55. https://doi.org/10.1016/j.tibtech.2004.11.005
  18. Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 2006;1:2320-2325. https://doi.org/10.1038/nprot.2006.384
  19. Kofler R, Torres TT, Lelley T, Schlotterer C. PanGEA: identification of allele specific gene expression using the 454 technology. BMC Bioinformatics 2009;10:143. https://doi.org/10.1186/1471-2105-10-143
  20. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999;27:573-580. https://doi.org/10.1093/nar/27.2.573
  21. Conesa A, Gotz S, García-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005;21:3674-3576. https://doi.org/10.1093/bioinformatics/bti610
  22. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005;21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  23. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297-302. https://doi.org/10.2307/1932409
  24. Sneath PH, Sokal RR. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: W. H. Freeman, 1973.
  25. Yap IV, Nelson RJ. Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. Manila: IRRI, 1996.
  26. Clarke LA, Rebelo CS, Goncalves J, Boavida MG, Jordan P. PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Mol Pathol 2001;54:351-353. https://doi.org/10.1136/mp.54.5.351
  27. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 2007;114:359-372. https://doi.org/10.1007/s00122-006-0440-x
  28. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN. EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 2004;108:1010-1016. https://doi.org/10.1007/s00122-003-1517-4
  29. Rungis D, Berube Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 2004;109:1283-1294. https://doi.org/10.1007/s00122-004-1742-5
  30. Cloutier S, Niu Z, Datla R, Duguid S. Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 2009;119:53-63. https://doi.org/10.1007/s00122-009-1016-3
  31. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 2001;160:1115-1123. https://doi.org/10.1016/S0168-9452(01)00365-X
  32. Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 2002;48:501-510. https://doi.org/10.1023/A:1014875206165
  33. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 2004;109:800-805. https://doi.org/10.1007/s00122-004-1685-x
  34. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ. Analysis of SSRs derived from grape ESTs. Theor Appl Genet 2000;100:723-726. https://doi.org/10.1007/s001220051344
  35. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003;106:411-422. https://doi.org/10.1007/s00122-002-1031-0
  36. Varshney RK, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 2002;7:537-546.
  37. Zhuravlev YN, Reunova GD, Kats IL, Muzarok TI, Bondar AA. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye. Chin Med 2010;5:21. https://doi.org/10.1186/1749-8546-5-21
  38. Cruse-Sanders JM, Hamrick JL. Genetic diversity in harvested and protected populations of wild American ginseng, Panax quinquefolius L. (Araliaceae). Am J Bot 2004;91:540-548. https://doi.org/10.3732/ajb.91.4.540
  39. Mooney EH, Mcgraw JB. Effects of self-pollination and outcrossing with cultivated plants in small natural populations of American ginseng, Panax quinquefolius (Araliaceae). Am J Bot 2007;94:1677-1687. https://doi.org/10.3732/ajb.94.10.1677
  40. Wang D, Hong D, Koh HL, Zhang YJ, Yang CR, Hong Y. Biodiversity in cultivated Panax notoginseng populations. Acta Pharmacol Sin 2008;29:1137-1140. https://doi.org/10.1111/j.1745-7254.2008.00875.x
  41. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 2003;270:315-323. https://doi.org/10.1007/s00438-003-0921-4
  42. Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 2009;9:35. https://doi.org/10.1186/1471-2229-9-35
  43. Saha MC, Mian MA, Eujayl I, Zwonitzer JC, Wang L, May GD. Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 2004;109:783-791. https://doi.org/10.1007/s00122-004-1681-1
  44. Yu JK, Dake TM, Singh S, Benscher D, Li WL, Gill B, Sorrells ME. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 2004;47:805-818. https://doi.org/10.1139/g04-057
  45. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 2002;104:399-407. https://doi.org/10.1007/s001220100738
  46. Han ZG, Guo WZ, Song XL, Zhang TZ. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 2004;272:308-327. https://doi.org/10.1007/s00438-004-1059-8
  47. Hisano H, Sato S, Isobe S, Sasamoto S, Wada T, Matsuno A, Fujishiro T, Yamada M, Nakayama S, Nakamura Y et al. Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res 2007;14:271-281. https://doi.org/10.1093/dnares/dsm025
  48. Varshney RK, Grosse I, Hahnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 2006;113:239-250. https://doi.org/10.1007/s00122-006-0289-z
  49. Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 2005;52:903-909. https://doi.org/10.1007/s10722-003-6112-7
  50. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 2000;100:713-722. https://doi.org/10.1007/s001220051343
  51. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica 2001;119:39-43. https://doi.org/10.1023/A:1017537720475
  52. Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 2004;47:389-398. https://doi.org/10.1139/g03-125
  53. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 2004;271:709-716.
  54. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007;449:463-467. https://doi.org/10.1038/nature06148
  55. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 2006;18:1339-1347. https://doi.org/10.1105/tpc.105.040535
  56. Bulgakov VP, Lauve LS, Chernoded GK, Khodakovskaia MV, Zhuravlev IuN. Chromosomal variability of ginseng cells transformed with plant oncogene rolC. Genetika 2000;36:209-216.
  57. Besnard G, Garcia-Verdugo C, De Casas RR, Treier UA, Galland N, Vargas P. Polyploidy in the olive complex(Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 2008;101:25-30. https://doi.org/10.1093/aob/mcm275
  58. Grushvitskii IV. Zhen'shen : Voprosy biologii. Leningrad: Akad. Nauk SSSR, 1961.
  59. Artiukova EV, Goncharov AA, Kozyrenko MM, Reunova GD, Zhuravlev IuN. Phylogenetic relationships of the Far Eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Genetika 2005;41:800-810.
  60. Choi HK, Wen J. A phylogenetic analysis of Panax (Araliaceae): integrating cpDNA restriction site and nuclear rDNA ITS sequence data. Plant Syst Evol 2000;224:109-120. https://doi.org/10.1007/BF00985269
  61. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ. The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 2001;26:144-167.
  62. Wen J, Zimmer EA. Phylogeny and biogeography of Panax L (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 1996;6:167-177. https://doi.org/10.1006/mpev.1996.0069
  63. Lee C, Wen J. Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Mol Phylogenet Evol 2004;31:894-903. https://doi.org/10.1016/j.ympev.2003.10.009
  64. Zhu S, Fushimi H, Cai S, Komatsu K. Phylogenetic relationship in the genus Panax: inferred from chloroplast trnK gene and nuclear 18S rRNA gene sequences. Planta Med 2003;69:647-653. https://doi.org/10.1055/s-2003-41117
  65. Choi HI, Kim NH, Jung JY, Park HM, Park HS, Park JY, Lee J, Park J, Lee J, Choi BS et al. Current status of Korean ginseng (Panax ginseng) genome mapping and sequencing. In: Yang DC, Kim SK, Oh HI, eds. Advances in ginseng research. Proceedings of 10th International Symposium on Ginseng; 2010 Sep 13-16; Seoul, Korea. Seoul: The Korean Society of Ginseng, 2010. p. 762-778.

Cited by

  1. Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution vol.6, pp.4, 2012, https://doi.org/10.3897/compcytogen.v6i4.3740
  2. Diversity and evolution of major Panax species revealed by scanning the entire chloroplast intergenic spacer sequences vol.60, pp.2, 2013, https://doi.org/10.1007/s10722-012-9844-4
  3. Evolutionary relationship of Panax ginseng and P. quinquefolius inferred from sequencing and comparative analysis of expressed sequence tags vol.60, pp.4, 2013, https://doi.org/10.1007/s10722-012-9926-3
  4. Microsatellite Analysis of <i>Panax ginseng</i> Natural Populations in Russia vol.05, pp.04, 2014, https://doi.org/10.4236/cm.2014.54028
  5. C.A. Meyer) genome and evidence for allotetraploidy vol.77, pp.6, 2014, https://doi.org/10.1111/tpj.12441
  6. The impacts of polyploidy, geographic and ecological isolations on the diversification of Panax (Araliaceae) vol.15, pp.1, 2015, https://doi.org/10.1186/s12870-015-0669-0
  7. RNA-seq Transcriptome Analysis of Panax japonicus, and Its Comparison with Other Panax Species to Identify Potential Genes Involved in the Saponins Biosynthesis vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.00481
  8. Species Developed via Comparative Analysis of Complete Chloroplast Genome Sequences vol.65, pp.30, 2017, https://doi.org/10.1021/acs.jafc.7b00925
  9. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.01578
  10. (Araliaceae) Using Whole-Genome Data vol.4, pp.11, 2016, https://doi.org/10.3732/apps.1600075
  11. Panax species identification with the assistance of DNA data vol.65, pp.7, 2018, https://doi.org/10.1007/s10722-018-0655-0
  12. Comparative assessment of genetic diversity in Albanian olive (Olea europaea L.) using SSRs from anonymous and transcribed genomic regions vol.14, pp.4, 2018, https://doi.org/10.1007/s11295-018-1269-6
  13. Phylogenomics and barcoding of Panax: toward the identification of ginseng species vol.18, pp.1, 2018, https://doi.org/10.1186/s12862-018-1160-y
  14. Comprehensive analysis of Panax ginseng root transcriptomes vol.15, pp.1, 2015, https://doi.org/10.1186/s12870-015-0527-0
  15. EST-SSR Marker Sets for Practical Authentication of All Nine Registered Ginseng Cultivars in Korea vol.36, pp.3, 2011, https://doi.org/10.5142/jgr.2012.36.3.298
  16. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products vol.38, pp.2, 2011, https://doi.org/10.1016/j.jgr.2013.11.017
  17. Sorting and identification of Rehmannia glutinosa germplasm resources based on EST-SSR, scanning electron microscopy micromorphology, and quantitative taxonomy vol.123, pp.None, 2011, https://doi.org/10.1016/j.indcrop.2018.06.088
  18. Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank: Implications for Breeding and Conservation vol.10, pp.1, 2011, https://doi.org/10.3390/agronomy10010068
  19. Genetic Composition of Korean Ginseng Germplasm by Collection Area and Resource Type vol.10, pp.11, 2011, https://doi.org/10.3390/agronomy10111643
  20. Complete Mitochondrial Genome and a Set of 10 Novel Kompetitive Allele-Specific PCR Markers in Ginseng (Panax ginseng C. A. Mey.) vol.10, pp.12, 2011, https://doi.org/10.3390/agronomy10121868
  21. Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia vol.22, pp.1, 2011, https://doi.org/10.1186/s12864-021-07427-2