• Title/Summary/Keyword: Simple Sequence Repeat

Search Result 196, Processing Time 0.032 seconds

Development and Application of DNA Analysis Method for Identificaion of Main Ingredients in Starch (전분의 주원료 판별을 위한 유전자 분석법 개발 및 적용)

  • Park, Yong-Chjun;Kim, Mi-Ra;Kim, Yong-Sang;Lee, Ho-Yeon;Kim, Kyu-Heon;Lee, Jae-Hwang;Kim, Jae-I;Lee, Sang-Jae;Lee, Hwa-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.181-187
    • /
    • 2013
  • Identification of main ingredients in starches has been investigated using physicochemical analysis method mainly. However, physicochemical properties such as particle size have limitations in determining the differences among mixed starches. Therefore, we developed a molecular biological method to identify materials used in starch, as a sample, 11 kinds of starches including sweet potato starch, potato starch, corn starch, and tapioca starch. DNeasy plant mini kit, magnetic DNA purification system, and CTAB methods were used to extract DNA from samples. After gene extraction, whole genome amplification (WGA) was performed to amplify the extracted DNA. Species-specific primers were used as followings: ib-286-F/ib-286-R (105 bp), Pss 01n-5'/Pss 01n-3' (216 bp), SS11b 3-5'/SS11b 3-3' (114 bp), and SSRY26-F/SSRY26-R (121 bp) gene for sweet potato, potato, corn, and tapioca, respectively. In this study, we could confirm the main ingredients using WGA and PCR method.

Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea (한국의 상업적 양송이 균주의 유전적 다양성 및 집단 구조)

  • Lee, Hwa-Yong;An, Hye-jin;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Ryu, Ho-jin;Chung, Jong-Wook
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • Agaricus bisporus is a functional food and among the most widely cultivated mushrooms in the world. In this study, we analyzed the genetic diversity and population structure of 23 Korean and 42 foreign A. bisporus cultivars using SSR (Simple sequence repeat) markers. Genetic diversity of A. bisporus cultivars was as follows: number of alleles was approximately 13; observed and expected heterozygosity were approximately 0.59 and 0.74, respectively; and polymorphic information content value was about 0.71. A. bisporus cultivars were divided into three groups using distance-based analysis. Genetic diversity of Group 2, which consisted of cultivars from various countries, was high. In addition, model-based subpopulations were divided into two, and the genetic diversity of Pop2 (Population 2), which had many cultivars, was high. The results of this study could be used in a breeding program for A. bisporus, such as the development of new genetic resources and securing diversity.

Assessment of Genetic Relationship among Date (Zizyphus jujuba) Cultivars Revealed by I-SSR Marker (I-SSR 표지자분석을 이용한 대추나무 품종간 유연관계 분석)

  • Nam, Jae-Ik;Kim, Young-Mi;Choi, Go-Eun;Lee, Gwi-Young;Park, Jae-In
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The jujube is an important fruit tree species in Korea. Traditionally, classifications of jujube cultivars have been based on morphological characters; however, morphological identification can be problematic because morphological traits are affected by environmental conditions. Therefore, DNA markers are now being used for the rapid and accurate identification of plant species. Inter-simple sequence repeat (I-SSR) is one of the best DNA-based molecular marker techniques, which is useful for studying genetic relations and for the identification of closely related cultivars. In this study, 5 Korean jujube trees and 1 jujube tree imported from China were analyzed for 16 I-SSR primers. Amplification of the genomic DNA of jujube cultivars by using I-SSR analysis generated 100 bands, with an average of 6.25 bands per primer, of which 45 bands (45%) were polymorphic. The number of amplified fragments with I-SSR primers ranged from 2 to 13. The percentage of polymorphism ranged from 10% to 100%. I-SSR finger printing profiles showed that 'Boeun jujube' and 'Daeri jujube' had characteristic DNA patterns, indicating unequivocal cultivar identification at molecular level. According to the results of clustering analysis, the genetic similarity coefficient ranged from 0.68 to 0.92. 'Boeun jujube' and 'Daeri jujube' were divided into independent groups, and 'Bokjo jujube', 'Geumseong jujube', 'Wolchul jujube', and 'Mudeung jujube' were placed in the same group. Therefore, I-SSR markers are suitable for the discrimination of 'Boeun jujube' and 'Daeri jujube' cultivars.

Genetic Diversity and Structure of the Korean Rare and Endemic Species, Deutzia pdaniculata Nakai, as Revealed by ISSR Markers (한국 희귀 특산식물 꼬리말발도리 집단의 유전적 다양성 및 구조)

  • Son, Sung-Won;Choi, Kyoung Su;Park, Kyu Tae;Kim, Eun-Hye;Park, Seon Joo
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2013
  • Deutzia paniculata Nakai is a Korean endemic species that has a very restricted distribution in Gyeongsang-do, South Korea. The genetic diversity and structure of five populations of D. paniculata were investigated using 31 ISSR loci from six primers. The Shannon's index (0.429) and genetic diversity (0.271) were relatively higher than those of other rare plant species in Korea. The Miryang (MY) and Yangsan (YS) populations, which have higher flowering rates than the other populations, showed greater genetic diversity than the other populations. An analysis of the molecular variance (AMOVA) showed that 16% of the total variation could be attributed to differences among the populations, and 84% to the differences within populations, indicating moderate gene flow among adjacent populations. The high genetic diversity and low genetic differentiation in the Deutzia paniculata populations, which have a restricted distribution, is considered to be affected by outcrossing of the mating system and abundant individuals in the populations. These results suggest that ex situ conservation strategies are needed to sustain the current genetic diversity of D. paniculata.

Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers

  • Sa, Kyu Jin;Choi, Ik?Young;Park, Kyong?Cheul;Lee, Ju Kyong
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1319-1329
    • /
    • 2018
  • SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Mapping QTLs for Agronomic Traits Using an Introgressin Line Population from a Cross between Ilpumbyeo and Moroberekan in Rice (일품벼/모로베레칸 이입계통을 이용한 농업형질 관련 QTL 분석)

  • Ju, Hong-Guang;Kim, Dong-Min;Kang, Ju-Won;Kim, Myung-Ki;Kim, Yeon-Gyu;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.414-421
    • /
    • 2008
  • We conducted a QTL analysis of agronomic traits using 117 $BC_3F_5$ and $BC_3F_6$ lines developed from a cross between Ilpumbyeo and Moroberekan. Genotypes of 117 $BC_3F_5$ lines were determined using 134 simple sequence repeat (SSR) markers. A total of 832 Moroberekan chromosome segments with 410 homozygous and 422 heterozygous, respectively, were detected, and the genetic distance of introgression segments ranged from 0.5 cm to 112.1 cm. A linkage map constructed using 134 SSR markers was employed to characterize quantitative trait loci (QTL). The 117 $BC_3F_5$ and $BC_3F_6$ lines were evaluated for seven agronomic traits at two locations in 2006 and 2007 and at one location in 2007. A total of 26 QTLs were identified for seven traits including days to heading, and the phenotypic variance explained by each QTL ranged from 9.2% to 24.2%. Moroberekan alleles contributed positive effects in the Ilpumbyeo background at eleven QTL loci including panicle length and spikelets per panicle. Five QTLs, two for days to heading and one each for culm length, panicle length and spikelets per panicle were consistently detected in every occasions indicating that these QTLs are stable. Among them, two QTLs, spp6 for spikelets per panicle and pl6 for paniclel length were localized in the similar region. Increase in spikelets per panicle at this locus might be due to the increase in panicle length, because both traits were associated with increase in spikelets per panicle and panicle length due to the presence of the Moroberekan allele. These Moroberekan QTLs might be useful in breeding programs to develop high-yielding cultivars.

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Development of Microsatellite Markers for Parentage Analysis in the Japanese Eel Anguilla japonica (극동산 뱀장어(Anguilla japonica)의 친자확인을 위한 유전자 마커 개발)

  • Noh, Eun Soo;Shin, Eun-Ha;Park, Gyeong-Hyun;Kim, Eun-Mi;Kim, Young-Ok;Ryu, Yongwoon;Kim, Shin-Kwon;Nam, Bo-Hye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.557-566
    • /
    • 2022
  • The Japanese eel Anguilla japonica is a highly valued research object that is important for aquaculture in Asia, including the Republic of Korea. However, few studies have been conducted analyzing parentage using microsatellite markers derived from the Japanese eel. We acquired Japanese eel genome data using next generation sequencing technology, and constructed a draft genome comprising 1,087 Mbp. Using the Simple Sequence Repeat Identification Tool program, 444,724 microsatellites were identified. Of these, 1,842 microsatellites located in the 3' untranslated region, which are stably inherited, were finally selected. Ninety-six primers were selected to validate polymorphism at these microsatellites, and 9 primers were finally identified for multiplex analysis. Using multiplex polymerase chain reaction with three different fluorescence chemistries, we performed parentage analysis of an artificial Japanese eel population. CERVUS software was used to calculate the logarithm of the odds (LOD) scores and the confidence of the parentage assignments. The results presented here show that 83 out of 85 paternity cases were assigned at 95% confidence to a candidate father and mother with LOD scores ranging from 4.79 to 28.2. This study provided a microsatellite marker-based assay for parentage analysis of Japanese eels, which will be useful for selective breeding and genetic diversity studies.

SSR Profiling and Its Variation in Soybean Germplasm (콩 유전자원의 SSR Profiling과 변이)

  • Yoon, Mun-Sup;Lee, Jeong-Ran;Baek, Hyung-Jin;Cho, Gyu-Taek;Kim, Chang-Yung;Cho, Yang-Hee;Kim, Tae-San;Cho, Eun-Gi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • The evaluation of soybean germplasm has mainly been carried out by morphological characters at Genetic Resources Division, Rural Development Administration (RDA). However, this information has been limited serving a diverse information for user and effectively managing the soybean germplasm. To resolve this problem, soybean collection conserved at RDA gene bank was profiled using nine soybean SSR (Simple Sequence Repeat) markers. Soybean SSR allele was confirmed using genescan and genotyper softwares of automatic sequencer for accurate genotyping of each accession and continuous accumulation of data. SSR profiling of soybean germplasm has been carried out from 2,855 (Satt458) to 4,368 (Satt197) accessions by locus. The number of allele revealed 267 with an average of 29.6 in total accession, and varied from a low of 21 (Satt532 and Satt141) to a high of 58 (Sat_074). Although the number of accessions of wild soybean is less than that of soybean landraces, Korean wild soybean is more variable than other soybean landraces populations in total number of alleles. However, Korean soybean landraces were more variable than Korean wild soybeans in 5 loci. In the allele frequency, wild soybean accessions showed an even distribution in all alleles and higher distribution in low ladder than in high ladder. Also, Korean soybean landraces revealed a high condensed frequency in Satt286 (202 bp, 232 bp), Chinese soybean landraces in Satt197 (171 bp) and Satt458 (173 bp), and Japanese soybean landraces in Sat_074 (244 bp) and Satt458 (170 bp). These SSR profile information will be provided as indications of redundancies or omissions of accessions and can aid in managing soybean collection held at RDA gene bank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding program, and could be used to develop a core collection of soybean germplasm.