DOI QR코드

DOI QR Code

Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea

한국의 상업적 양송이 균주의 유전적 다양성 및 집단 구조

  • Lee, Hwa-Yong (Department of Biology, Chungbuk National University) ;
  • An, Hye-jin (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science) ;
  • Jang, Kab-Yeul (Mushroom Science Division, National Institute of Horticultural and Herbal Science) ;
  • Kong, Won-Sik (Mushroom Science Division, National Institute of Horticultural and Herbal Science) ;
  • Ryu, Ho-jin (Department of Biology, Chungbuk National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University)
  • 이화용 (충북대학교 생물학과) ;
  • 안혜진 (충북대학교 특용식물학과) ;
  • 오연이 (국립원예특작과학원 버섯과) ;
  • 장갑열 (국립원예특작과학원 버섯과) ;
  • 공원식 (국립원예특작과학원 버섯과) ;
  • 류호진 (충북대학교 생물학과) ;
  • 정종욱 (충북대학교 특용식물학과)
  • Received : 2019.09.30
  • Accepted : 2019.12.04
  • Published : 2019.12.31

Abstract

Agaricus bisporus is a functional food and among the most widely cultivated mushrooms in the world. In this study, we analyzed the genetic diversity and population structure of 23 Korean and 42 foreign A. bisporus cultivars using SSR (Simple sequence repeat) markers. Genetic diversity of A. bisporus cultivars was as follows: number of alleles was approximately 13; observed and expected heterozygosity were approximately 0.59 and 0.74, respectively; and polymorphic information content value was about 0.71. A. bisporus cultivars were divided into three groups using distance-based analysis. Genetic diversity of Group 2, which consisted of cultivars from various countries, was high. In addition, model-based subpopulations were divided into two, and the genetic diversity of Pop2 (Population 2), which had many cultivars, was high. The results of this study could be used in a breeding program for A. bisporus, such as the development of new genetic resources and securing diversity.

본 연구에서는 한국에서 개발한 23개의 양송이 품종과 42개의 도입품종의 유전적 다양성과 집단 구조를 SSR 마커를 이용하여 분석하였다. 양송이 품종의 NA는 약 13, HO는 약 0.59, HE는 약 0.74, PIC값은 약 0.71 이었다. 양송이 품종은 군집분석에 의하여 3개의 Group으로 구분되었고 다양한 국가의 품종으로 구성된 Group2의 다양성이 높았으며, 구조분석에 의하여 2개의 subpopulation으로 구분되었고, 품종의 수가 많은 Pop2의 다양성이 높았다. 한국의 양송이 품종들은 주로 Group 3에 분포하고, subpopulation 간 분포에는 큰 차이를 보이지 않았다. 본 연구의 결과는 양송이의 육종소재의 개발, 다양성 확보 등과 같은 품종의 개발과정에 이용될 수 있을 것이다.

Keywords

References

  1. An H, Jo IH, Oh YL, Jang KY, Kong WS, Sung JK, So YS, Chung JW. 2019. Molecular Characterization of 170 New gDNA-SSR Markers for Genetic Diversity in Button Mushroom (Agaricus bisporus). Mycobiology DOI:10.1080/12298093.2019.1667131
  2. Cavalli-Sforza LL, Edwards AWF. 1967. Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19: 233-257.
  3. Cho KH, Heo S, Kim JH, Shin IS, Kim SH, Kim DH, Han SE, Kim HR. 2010. Analysis of genetic diversity of apple cultivars using RAPD and SSR markers. Kor J Breed Sci 42: 525-533.
  4. Choudhary G, Ranjitkumar N, Surapaneni M, Deborah DA, Vipparla A, Anuradha G, Siddiq EA, Vemireddy LR. 2013. Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods. PLoS One 21(8): e66197.
  5. Du QZ, Wang BW, Wei ZZ, Zhang DQ, Li BL. 2012. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered 103: 853-862. https://doi.org/10.1093/jhered/ess061
  6. Dubost NJ, Ou B, Beelman RB. 2007. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem 105: 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030
  7. Elliott TJ. 1985. Genetics and breeding of species of Agaricus. In P.B. Flegg, D.M. Spencer & D.A. Wood. (ed.), Biology and Technology of the Cultivated Mushroom, Wiley. England. 111-139.
  8. Evanno G. Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  9. Foulongne-Oriol M, Spataro C, Savoie JM. 2009. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol 84: 1125-1135. https://doi.org/10.1007/s00253-009-2030-8
  10. Fu Y, Wang X, Li D, Liu Y, Song B, Zhang C, Wang Q, Chen M, Zhang Z, Li Y. 2016. Identification of resistance to wet bubble disease and genetic diversity in wild and cultivated strains of Agaricus bisporus. Int J Mol Sci 17: 1568. https://doi.org/10.3390/ijms17101568
  11. Hamrick JL, Godt MJ. 1989. Allozyme diversity in plant species. In A.H.D. Brown, M.T. Clegg, A.L. Kahler, & B.S. Weir (ed.), Plant Population Genetics, Breeding and Germplasm Resources, Sinauer Associates Inc. England. 43-63.
  12. Kerrigan RW, Carvalho DB, Horgen PA, Anderson JB. 1995. Indigenous and introduced populations of the cultivated button mushroom, in eastern and western Canada: implications for population biology, resource management, and conservation of genetic diversity. Can J Bot 73: 1925-1938. https://doi.org/10.1139/b95-205
  13. Kerrigan RW. 1996. Characteristics of a large collection of wild edible mushroom germ plasm: the Agaricus resource program. In R.A. Samson (ed.), Proceedings of the Eight International Congress for Culture Collections, Baarn: Centraalbureau voor Schimmel cultures and The World Federation for Culture Collections. The Netherlands. 302-308.
  14. Kerrigan RW. 2004. Trait diversity in wild Agaricus bisporus. Mush Sci 16: 8.
  15. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  16. Lee HY, Raveendar S, An H, Oh YL, Jang GY, Kong WS, Ryu H, So YS, Chung JW. 2018. Development of Polymorphic Simple Sequence Repeat Markers using High-Throughput Sequencing in Button Mushroom (Agaricus bisporus). Mycobiology 46: 421-428. https://doi.org/10.1080/12298093.2018.1538072
  17. Li RY, Zhang H, Zhou XC, Guan YA, Yao FX, Song GA, Wang JC, Zhang CQ. 2010. Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Genet Resour Crop Evol 57: 1-15. https://doi.org/10.1007/s10722-009-9446-y
  18. Liu K. Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  19. Liu M, Xu Y, He J, Zhang S, Wang Y, Lu P. 2016. Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci 17: 370. https://doi.org/10.3390/ijms17030370
  20. Liu XB, Feng B, Li J, Yan C, Yang ZL. 2016. Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 591: 227-235. https://doi.org/10.1016/j.gene.2016.07.009
  21. Oh YL, Jang KY, Jhune CS, Kong WS, Yoo YB, Shin PG, Seo JS. 2013. Quality changes in Agaricus bisporus varieties due to period and temperature during their storage. J Mushroom Sci Prod 11: 137-144. https://doi.org/10.14480/JM.2013.11.3.137
  22. Park CW, Choi KJ, Soh EH, Koh HJ. 2016. Study on the future development direction of plant variety protection system in Korea. Korean J Breed Sci 48: 11-21. https://doi.org/10.9787/KJBS.2016.48.1.011
  23. Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  24. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  25. Prospero S, Lung-Excarmant B, Dutech C. 2008. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France. Mol Ecol 17: 3366-3378. https://doi.org/10.1111/j.1365-294X.2007.03829.x
  26. Ramanatha Rao V, Hodgkin T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss Organ Cult 68: 1-19. https://doi.org/10.1023/A:1013359015812
  27. Raper CA, Raper JR, Miller RE. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64: 1088-1117. https://doi.org/10.1080/00275514.1972.12019354
  28. Rokni N, Goltapeh ME, Shafeinia A, Safaie N. 2016. Evaluation of genetic diversity among some commercial cultivars and Iranian wild strains of Agaricus bisporus by microsatellite markers. Botany 94: 9-13. https://doi.org/10.1139/cjb-2015-0131
  29. Royse DJ, Baars J, Tan Q. 2017. Current overview of mushroom production in the world. In D.C. Zied, A. Pardo-Gimenez (ed.), Edible and medicinal mushrooms: technology and applications, John Wiley & Sons Ltd. USA. 5-13.
  30. Savoie JM, Foulongne-Oriol M, Barroso G, Callac P. 2013. Genetics and genomics of cultivated mushrooms, application to breeding of agarics. In F. Kempken (ed.), Agricultural Applications, Springer-Verlag. Berlin. Germany. 3-33.
  31. Sonnenberg ASM, Johan JPB, Patrick MH, Brian L, Wei G, Amrah W, Jurriaan JM. 2011. Breeding and strain protection in the button mushroom Agaricus bisporus. In J.M. Savoie, M. Foulongne-Oriol, M. Largeteau, G. Barroso (ed.), Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products. France. 7-15.
  32. Tian Y, Zeng H, Xu Z, Zheng B, Lin Y, Gan C, Lo YM. 2012. Ultrasonic assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr Polym 88: 522-529 https://doi.org/10.1016/j.carbpol.2011.12.042
  33. Wang C, Jia G, Zhi H, Niu Z, Chai Y, Li W, Wang Y, Li H, Lu P, Zhao B, Diao X. 2012. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 2: 769-777. https://doi.org/10.1534/g3.112.002907
  34. Wen ZX, Ding YL, Zhao TN, Gai JY. 2009, Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet 119: 371-381. https://doi.org/10.1007/s00122-009-1045-y
  35. Xiang X, Li C, Li L, Bian Y, Kwan HS, Nong W, Cheung MK, Xiao Y. 2016. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog 15: 37. https://doi.org/10.1007/s11557-016-1183-y
  36. Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y. 2011. Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6: e27565. https://doi.org/10.1371/journal.pone.0027565
  37. Zhang Q, Li J, Zhao Y, Korban SS, Han Y. 2012. Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. Plant Mol Biol Rep 30: 539-546. https://doi.org/10.1007/s11105-011-0366-6
  38. Zhao M, Huang C, Chen Q, Wu X, Qu J, Zhang J. 2013. Genetic variability and population structure of the mushroom Pleurotus eryngii var. tuoliensis. PLoS One 8: e83253. https://doi.org/10.1371/journal.pone.0083253