Browse > Article

SSR Profiling and Its Variation in Soybean Germplasm  

Yoon, Mun-Sup (National Institute of Agricultural Biotechnology, RDA)
Lee, Jeong-Ran (National Institute of Agricultural Biotechnology, RDA)
Baek, Hyung-Jin (National Institute of Agricultural Biotechnology, RDA)
Cho, Gyu-Taek (National Institute of Agricultural Biotechnology, RDA)
Kim, Chang-Yung (National Institute of Agricultural Biotechnology, RDA)
Cho, Yang-Hee (National Institute of Agricultural Biotechnology, RDA)
Kim, Tae-San (National Institute of Agricultural Biotechnology, RDA)
Cho, Eun-Gi (Research & Development Bureau, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.52, no.1, 2007 , pp. 81-88 More about this Journal
Abstract
The evaluation of soybean germplasm has mainly been carried out by morphological characters at Genetic Resources Division, Rural Development Administration (RDA). However, this information has been limited serving a diverse information for user and effectively managing the soybean germplasm. To resolve this problem, soybean collection conserved at RDA gene bank was profiled using nine soybean SSR (Simple Sequence Repeat) markers. Soybean SSR allele was confirmed using genescan and genotyper softwares of automatic sequencer for accurate genotyping of each accession and continuous accumulation of data. SSR profiling of soybean germplasm has been carried out from 2,855 (Satt458) to 4,368 (Satt197) accessions by locus. The number of allele revealed 267 with an average of 29.6 in total accession, and varied from a low of 21 (Satt532 and Satt141) to a high of 58 (Sat_074). Although the number of accessions of wild soybean is less than that of soybean landraces, Korean wild soybean is more variable than other soybean landraces populations in total number of alleles. However, Korean soybean landraces were more variable than Korean wild soybeans in 5 loci. In the allele frequency, wild soybean accessions showed an even distribution in all alleles and higher distribution in low ladder than in high ladder. Also, Korean soybean landraces revealed a high condensed frequency in Satt286 (202 bp, 232 bp), Chinese soybean landraces in Satt197 (171 bp) and Satt458 (173 bp), and Japanese soybean landraces in Sat_074 (244 bp) and Satt458 (170 bp). These SSR profile information will be provided as indications of redundancies or omissions of accessions and can aid in managing soybean collection held at RDA gene bank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding program, and could be used to develop a core collection of soybean germplasm.
Keywords
cultivated soybean; wild soybean; SSR profile; polymorphism;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cregan, P. B., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and J. Rongwen. 1994. Length polymorphism of simple sequence repeat (SSR) DNA as molecular markers in plants. In Plant Genome Analysis. Current Topics in Plant Molecular Biology. Gresshoff P.M. (ed), CRC press, New York
2 Dong, Y. S., L. M. Zhao, B. Liu, Z. W. Wang, Z. Q. Jin, and H. Sun. 2003. The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet. 108 : 931-936
3 Kwon, S. H., K. H. Im, and J. R. Kim. 1972. Studies on diversity of seed weight in the Korean soybean land races and wild soybean. Korean J. Breeding. 4(1) : 70-74
4 Song, Q. J., C. V. Quigley, R. L. Nelson, T. E. Carter, H. R. Boerma, J. L. Strachan, and P. B. Cregan. 1999. A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Varieties and Seeds. 12 : 207-220
5 Gepts, P. and M. T. Clegg. 1989. Genetic diversity in pearl millet (Pennisetum. glaucum [L.] R. Br.) at the DNA sequence level. J. Heredity. 80 : 203-208   DOI
6 Dong, Y. S., B. C. Zhuang, L. M. Zhao, H. Sun, and M. Y. He. 2001. The genetic diversity of annual wild soybean grown in China. Theor. Appl. Genet. 103 : 98-103   DOI
7 Song, Q. J., L. F. Marek, R. C. Shoemaker, K. G. Lark, V. C. Concibido, X. Delannay, J. E. Specht, and P. B. Cregan. 2004. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109 : 122-128   DOI
8 Rongwen, J., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and P. B. Cregan. 1995. The use of micro satellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90 : 43-48
9 Yoon, M. S., J. W. Ahn, J. H. Kang, H. J. Baek, N. K. Park, and Y. D. Rho. 2000b. Genotypic and geographical varia­tions of ${\beta}$-amylase isozyme in soybean land races by iso­electric focusing (IEF). Korean J. Crop Sci. 45(1) : 139­-142
10 Brown-Guedira, G. L., J. A. Thompson, R. L. Nelson, and M. L. Warburton. 2000. Evaluation of genetic diversity of soy­bean introductions and North American ancestors using RAPD and SSR markers. Crop Sci. 40 : 815-823   DOI   ScienceOn
11 Maughan, P. J., M. A. Saghai Maroof, and G. R. Buss. 1995. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome. 38 : 715-723   DOI   ScienceOn
12 Kim, S. H., J. W. Jung, J. K. Moon, S. H. Woo, Y. G. Cho, S. K. Jong, and H. S. Kim. 2006. Genetic diversity and relationship by SSR markers of Korean soybean cultivars. Korean J. Crop Sci. 51(3) : 248-258   과학기술학회마을
13 Saghai Maroof M. A., R. M. Biyashev, G. P. Yang, Q. Zhang, and R. W. Allard. 1994. Extraordinarily polymorphic micro­satellite DNA in barley : Species diversity, chromosomal locations and population dynamics. Pro. Natl. Acad. Sci. USA. 91 : 5466-5470
14 Abe, J., D. H. Xu, Y. Suzuki, A. Kanazawa, and Y. Shimamoto. 2003. Soybean germp1asm pools in Asia revealed by nuclear SSRs. Theor. Appl. Genet. 106 : 445-453   DOI
15 Perry, M. C., M. S. Mcintosh, and A. K. Stoner. 1991. Geo­graphical patterns of variation in the USDA soybean germ­plasm collection : II. Allozyme frequencies. Crop Sci. 31 : 1356-1360   DOI
16 Park, K. S. and M. S. Yoon. 1997. Variation of leucine amino­peptidase isozyme in Korean land races and wild soybeans. Korean J. Crop Sci. 42(2) : 129-133   과학기술학회마을
17 Hong, E. H., S. D. Kim, Y. H. Lee, and R. K. Park. 1988. Results and perspectives of soybean varietal improvement. '88 RDA symposium. 3 : 31-57
18 Narvel, J. M., W. R. Fehr, W. C. Chu, D. Grant, and R. C. Shoemaker. 2000. Simple sequence repeat diversity among soybean plant introductions and elite geneotypes. Crop Sci. 40 : 1452-1458   DOI   ScienceOn
19 Diwan, N. and P. B. Cregan. 1997. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95.: 723-733   DOI
20 Cregan, P. B., T. Jarvik, A. L. Bush, R. C. Shoemaker, K. G. Lark, A. L. Kahler, N. Kaya, T. T. VanToai, D. G. Lohnes, J. Chung, and J. E. Specht. 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39 : 1464-­1490   DOI
21 Perry, M. C. and M. S. Mcintosh. 1991. Geographical patterns of variation in the USDA soybean germplasm collection : I. Morphological traits. Crop Sci. 31 : 1350-1355   DOI
22 Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 132 : 1131-1139
23 Li, Z., L. Qiu, J. A. Thompson, M. M. Welsh, and R. L. Nelson. 2001. Molecular genetic analysis of U.S. and Chinese soybean ancestral lines. Crop Sci. 41 : 1330-1336   DOI
24 Yoon, M. S., J. W. Ahn, S. J. Park, H. J. Baek, N. K. Park, and Y. D. Rho. 2000a. Geographical patterns of morpho­logical variation in soybean (Glycine max (L.) Merrill) germ­plasm. Korean J. Crop Sci. 45(4) : 267-271   과학기술학회마을