• Title/Summary/Keyword: Simple Calculation Methods

Search Result 187, Processing Time 0.026 seconds

A hierarchical approach to state estimation of time-varying linear systems via block pulse function (블럭펄스함수를 이용한 시스템 상태추정의 계층별접근에 관한 연구)

  • 안두수;안비오;임윤식;이재춘
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.399-406
    • /
    • 1996
  • This paper presents a method of hierarchical state estimation of the time-varying linear systems via Block-pulse function(BPF). When we estimate the state of the systems where noise is considered, it is very difficult to obtain the solutions because minimum error variance matrix having a form of matrix nonlinear differential equations is included in the filter gain calculation. Therefore, hierarchical approach is adapted to transpose matrix nonlinear differential equations to a sum of low order state space equation from and Block-pulse functions are used for solving each low order state space equation in the form of simple and recursive algebraic equation. We believe that presented methods are very attractive nd proper for state estimation of time-varying linear systems on account of its simplicity and computational convenience. (author). 13 refs., 10 figs.

  • PDF

Thermal stress analysis for high pressure and temperature pipelines in ultra steam turbine (UST) system

  • Choi, Dae-keon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • A reliable assessment and analysis of the condition of high pressure and temperature steam pipelines requires defining stress state, which will take into consideration not just the impact of internal pressure and temperature but all applied loads. For that, usage of modeling and numerical methods for calculation and analysis of stress state is essential. The main aim of piping stress analysis is to check the design of piping layout, which will allow simple, efficient and economical piping supports and provide flexibility to the piping system for loads and stresses. The piping stress analysis is carried out using CAESER II software. By using this software we can evaluate stresses, stress ratios, flange condition, support loads, element forces and displacements at each node and points. In this paper, only the maximum and minimum displacement results are tabulated, which is also shown in detail by an example of main steam pipelines of UST Main Engine System [1].

A Review of Mode Synthesis Techniques and Its Application Between FE and Experimental Model (부분 구조 합성법의 고찰 및 유한 요소 모델과 실험 모델과의 합성에 관한 연구)

  • 최재웅;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.799-806
    • /
    • 1989
  • Component mode synthesis (CMS) method can be divided into free, fixed and hybrid interface method according to each component's connecting conditions. In this paper, major mode synthesis methods were reviewed and their accuracies were examined by comparing the calculated eigenvalues with those from full finite element (FE) model. Also, CMS is expanded into the coupling between finite element (FE) and experimental model. Since the assumed experimental data seldom have slope information, the slope information at the interface points is prepared by curve-fitting of the calculated values. A simple beam structure to show the effectiveness of the above method, and we found that it can improve the accuracy of the synthesis method in calculation, expecially in the low modes.

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

The Characteristic of Voltage Sags in Distribution System with Induction Motor Loads (유도전동기 부하를 고려한 배전계통의 전압저하(sag)특성)

  • Oh, Yong-Taek;Kim, Jin-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.69-73
    • /
    • 2006
  • The calculation of depth and duration of a sag is in both methods based on two simple assumptions. One is that due to the short circuit, the voltage drops to a low value immediately magnitude. Another is that when the fault is cleared. the voltage recovers immediately. These assumptions, however, do not hold in the case of a substantial part of the load consisting of electrical motors like in many industrial power systems. During the short circuit, the motors will slow down. Their reacceleration after the fault will increase the load current and thus prolong the voltage sag. This paper will discuss some of the aspects of the influence of induction motors on voltage sags.

  • PDF

One-Dimensional Search Location Algorithm Based on TDOA

  • He, Yuyao;Chu, Yanli;Guo, Sanxue
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.639-647
    • /
    • 2020
  • In the vibration target localization algorithms based on time difference of arrival (TDOA), Fang algorithm is often used in practice because of its simple calculation. However, when the delay estimation error is large, the localization equation of Fang algorithm has no solution. In order to solve this problem, one dimensional search location algorithm based on TDOA is proposed in this paper. The concept of search is introduced in the algorithm. The distance d1 between any single sensor and the vibration target is considered as a search variable. The vibration target location is searched by changing the value of d1 in the two-dimensional plane. The experiment results show that the proposed algorithm is superior to traditional methods in localization accuracy.

Study on Calculation of the Power and Power Factor of Electric Machinery Using Time-step FEM (시간차분 유한요소법을 이용한 전기기기의 입, 출력 및 역률계산에 관한 연구)

  • Yoo, Byung-Hun;Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.979-980
    • /
    • 2007
  • This paper deals with the analysis error in the time step FEM which is applied to analyze the electric machinery. In order to calculate the error accurately, a simple inductor structure which has analytical solution is designed, and then the time step analysis for the equivalent circuit and time step FEM is performed respectively. Finally, according to the analysis methods. the results are compared and discussed.

  • PDF

Generation of Target PSD Function Compatible with Design Response Spectrum (설계응답스펙트럼에 부합하는 목표 PSD함수의 작성)

  • Lee, Sang-Hoon;Choi, Dong-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.637-644
    • /
    • 2006
  • Acceleration time history used in the seismic analysis of nuclear porter plant structure should envelop a target power spectral density (PSD) function in addition to design response spectrum. Current regulation guide defines the target PSD function only for the U.S. URC RG 1.60 Design Response Spectrum. This paper proposes a technical scheme to obtain the target PSD function compatible with generally defined design response spectrum. The scheme includes the methodology for design-spectrum compatible motion history in order to minimize the variation of the derived target PSD function. The PSD calculation procedure follows simple and practical methods allowed within regulation. Effectiveness of the proposed scheme is identified through an example problem. The design response spectrum In the example is based on U.S. NRC RG 1.60 but amplifies the spectral acceleration amplitudes above 9Hz. The target PSD function with little variation can be constructed with the reduced time history ensemble.

  • PDF

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components (다중기기 취약도곡선의 지진상관계수 조합 절차)

  • Kim, Jung Han;Kim, Si Young;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.