• 제목/요약/키워드: Simple Bayes estimation

검색결과 7건 처리시간 0.026초

Bayes Prediction for Small Area Estimation

  • Lee, Sang-Eun
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.407-416
    • /
    • 2001
  • Sample surveys are usually designed and analyzed to produce estimates for a large area or populations. Therefore, for the small area estimations, sample sizes are often not large enough to give adequate precision. Several small area estimation methods were proposed in recent years concerning with sample sizes. Here, we will compare simple Bayesian approach with Bayesian prediction for small area estimation based on linear regression model. The performance of the proposed method was evaluated through unemployment population data form Economic Active Population(EAP) Survey.

  • PDF

Bayesian Parameter :Estimation and Variable Selection in Random Effects Generalised Linear Models for Count Data

  • Oh, Man-Suk;Park, Tae-Sung
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.93-107
    • /
    • 2002
  • Random effects generalised linear models are useful for analysing clustered count data in which responses are usually correlated. We propose a Bayesian approach to parameter estimation and variable selection in random effects generalised linear models for count data. A simple Gibbs sampling algorithm for parameter estimation is presented and a simple and efficient variable selection is done by using the Gibbs outputs. An illustrative example is provided.

ON HELLINGER CONSISTENT DENSITY ESTIMATION

  • Nicoleris, Theodoros;Walker, Stephen-G.
    • Journal of the Korean Statistical Society
    • /
    • 제32권3호
    • /
    • pp.261-270
    • /
    • 2003
  • This paper introduces a new density estimator which is Hellinger consistent under a simple condition. A number of issues are discussed, such as extension to Kullback-Leibler consistency, robustness, the Bayes version of the estimator and the maximum likelihood case. An illustration is presented.

Standard Error of Empirical Bayes Estimate in NONMEM$^{(R)}$ VI

  • Kang, Dong-Woo;Bae, Kyun-Seop;Houk, Brett E.;Savic, Radojka M.;Karlsson, Mats O.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.97-106
    • /
    • 2012
  • The pharmacokinetics/pharmacodynamics analysis software NONMEM$^{(R)}$ output provides model parameter estimates and associated standard errors. However, the standard error of empirical Bayes estimates of inter-subject variability is not available. A simple and direct method for estimating standard error of the empirical Bayes estimates of inter-subject variability using the NONMEM$^{(R)}$ VI internal matrix POSTV is developed and applied to several pharmacokinetic models using intensively or sparsely sampled data for demonstration and to evaluate performance. The computed standard error is in general similar to the results from other post-processing methods and the degree of difference, if any, depends on the employed estimation options.

Improved Statistical Testing of Two-class Microarrays with a Robust Statistical Approach

  • Oh, Hee-Seok;Jang, Dong-Ik;Oh, Seung-Yoon;Kim, Hee-Bal
    • Interdisciplinary Bio Central
    • /
    • 제2권2호
    • /
    • pp.4.1-4.6
    • /
    • 2010
  • The most common type of microarray experiment has a simple design using microarray data obtained from two different groups or conditions. A typical method to identify differentially expressed genes (DEGs) between two conditions is the conventional Student's t-test. The t-test is based on the simple estimation of the population variance for a gene using the sample variance of its expression levels. Although empirical Bayes approach improves on the t-statistic by not giving a high rank to genes only because they have a small sample variance, the basic assumption for this is same as the ordinary t-test which is the equality of variances across experimental groups. The t-test and empirical Bayes approach suffer from low statistical power because of the assumption of normal and unimodal distributions for the microarray data analysis. We propose a method to address these problems that is robust to outliers or skewed data, while maintaining the advantages of the classical t-test or modified t-statistics. The resulting data transformation to fit the normality assumption increases the statistical power for identifying DEGs using these statistics.

Parametric inference on step-stress accelerated life testing for the extension of exponential distribution under progressive type-II censoring

  • El-Dina, M.M. Mohie;Abu-Youssef, S.E.;Ali, Nahed S.A.;Abd El-Raheem, A.M.
    • Communications for Statistical Applications and Methods
    • /
    • 제23권4호
    • /
    • pp.269-285
    • /
    • 2016
  • In this paper, a simple step-stress accelerated life test (ALT) under progressive type-II censoring is considered. Progressive type-II censoring and accelerated life testing are provided to decrease the lifetime of testing and lower test expenses. The cumulative exposure model is assumed when the lifetime of test units follows an extension of the exponential distribution. Maximum likelihood estimates (MLEs) and Bayes estimates (BEs) of the model parameters are also obtained. In addition, a real dataset is analyzed to illustrate the proposed procedures. Approximate, bootstrap and credible confidence intervals (CIs) of the estimators are then derived. Finally, the accuracy of the MLEs and BEs for the model parameters is investigated through simulation studies.

SIMPLE RANKED SAMPLING SCHEME: MODIFICATION AND APPLICATION IN THE THEORY OF ESTIMATION OF ERLANG DISTRIBUTION

  • RAFIA GULZAR;IRSA SAJJAD;M. YOUNUS BHAT;SHAKEEL UL REHMAN
    • Journal of applied mathematics & informatics
    • /
    • 제41권2호
    • /
    • pp.449-468
    • /
    • 2023
  • This paper deals in the study of the estimation of the parameters of Erlang distribution based on rank set sampling and some of its modifications. Here we considered Maximum Likelihood (ML) and the Bayesian technique to estimate the shape and scale parameter of Erlang distribution based on RSS and its some modifications such as ERSS, MRSS, and MRSSu. The derivation for unknown parameters of Erlang distribution is well presented using normal approximation to the asymptotic distribution of ML estimators. But due to the complexity involves in the integral, the Bayes estimator of unknown parameters is obtained using MCMC method. Further, we compared the MSE of estimation in different sampling schemes with different set sizes and cycle size. A real-life data application is also given to illustrate the efficiency of the proposed scheme.