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  The pharmacokinetics/pharmacodynamics analysis software NONMEMⓇ output provides model 
parameter estimates and associated standard errors. However, the standard error of empirical Bayes 
estimates of inter-subject variability is not available. A simple and direct method for estimating 
standard error of the empirical Bayes estimates of inter-subject variability using the NONMEMⓇ VI 
internal matrix POSTV is developed and applied to several pharmacokinetic models using intensively 
or sparsely sampled data for demonstration and to evaluate performance. The computed standard error 
is in general similar to the results from other post-processing methods and the degree of difference, 
if any, depends on the employed estimation options.
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INTRODUCTION

  NONMEMⓇ (NONlinear Mixed Effects Model) is the most 
widely used software for the population pharmacokinetic/ 
pharmacodynamic (PK/PD) modeling and simulation, also 
is the standard tool for drug development as well as regu-
latory approval. NONMEMⓇ uses inter-subject variability 
parameter η to describe the individual differences in PK/PD 
parameters. However the standard error (SE) of the empiri-
cal Bayes estimate (EBE) of the inter-subject variability pa-
rameter η is not provided in the NONMEMⓇ output file. 
The SE of EBE is an enhanced model diagnosis tool to as-
sess the precision of the estimated inter-subject variability 
parameter η. Also the SE of EBE can be used for simulation 
considering the uncertainty in the inter-subject variability 
[1]. 
  The SE of EBE of the inter-subject variability parameter 
η is not available in the output file of NONMEMⓇ. Therefore 
postprocessing after a modeling NONMEM run is necessary 
to obtain the SE of EBE. Writing one’s own code requires 
careful thinking and programming expertise. A Perl based 
automated utility to calculate the SE of EBE is available 
in PsNⓇ version 2.2.6 or later [2]. However, a more direct 
method to obtain the SE of EBE is possible with NONMEMⓇ 
VI using one of the internal variables, POSTV. Unfortuna-
tely, this feature is not available in the previous versions 

of NONMEMⓇ. The POSTV matrix is not available in the 
new version of NONMEMⓇ 7, either. However, the elements 
of the POSTV matrix are available as ETC columns in the 
.phi file, one of the new output files from NONMEMⓇ 7.
  The objectives of this study are to illustrate how to directly 
obtain the SE of EBE by the use of NONMEMⓇ VI internal 
matrix POSTV and to evaluate the performance by compar-
ing the results with other methods. The contents of this 
paper are as follows. In the methods section, theoretical 
backgrounds for calculation of the EBE and the standard 
errors of EBE are overviewed along with the descriptions 
on the four models and the two datasets used to assess the 
different ways of calculating the standard of errors of EBE. 
Then detailed explanations on the three methods, including 
the suggested simple method of obtaining the covariance 
matrix of EBE in NONMEMⓇ VI using verbatim code, are 
provided. In the results section, the numerical results are 
summarized and compared. Lastly, the discussion section 
concludes with a few remarks and conclusions.

METHODS

  The following notations are used for PK/PD modeling us-
ing NONMEMⓇ: 

F=f1(θ, η, χ): the model predicted (i.e., fitted) value (F), 
model parameter (θ), interindividual random variability 
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parameter (η), and covariates (χ) defining structural 
model to explain pharmacokinetics/pharmacodynamics
Y=f2(F, ε): the observation (Y) given by F and the re-
sidual (or intra-individual) variability parameter (ε).
η∼MVN (0, Ω): inter-individual random variability mod-
eled using multivariate normal (MVN) distribution with 
mean zero and covariance matrix Ω
ε∼MVN (0, Σ): intra-individual (i.e., residual) random 
variability modeled using multivariate normal dis-
tribution with mean zero and covariance matrix Σ

  θ, Ω, and Σ are constants while η and ε are random 
variables. The function f1 represents a structural model de-
scribing the relationship between the PK/PD observations 
and the model parameter θ, while η and ε represent the 
stochastic model components describing the randomness 
unexplained by the structural model.
  The typical PK/PD of the population is summarized by 
θ, and individual PK/PD parameters are expressed as a 
combination of θ and η. For example, systemic clearance 
is expressed as 

    CL=θCLㆍexp(ηCL), Equation 1

where θCL is the typical value and ηCL is the corresponding 
inter-subject variability following normal distribution with 
mean zero and covariance, e.g., Ω11. In other words, the 
typical value of a PK/PD parameter is the value of PK/PD 
parameter with η=0. F is called the typical predication 
(PRED) when η=0, and the individual prediction (IPRE or 
IPRED) when η=  the EBE of individual eta.
  In addition to the inter- and intra-subject variability, 
there can be another level of random variability called in-
ter-occasion variability which describes the random varia-
bility among the different treatment occasions, for example, 
different visits. Implementation of inter-subject and intra- 
subject variability can be accomplished using the correspon-
ding NONMEMⓇ variance parameters η and ε. However, 
implementation of inter-occasion variability requires an 
elaborate coding using the inter-subject variability parame-
ter η, because η now has to match the new variability in-
troduced to model the inter-occasion differences. The develo-
ped method of computing standard error (SE) of EBE using 
NONMEMⓇ VI internal matrix POSTV can be applied to 
η for inter-subject variability as well as η for inter-occasion 
variability without further modification of NONMEMⓇ con-
trol code.
  The random variable η cannot be directly observed but 
can be estimated using subject level observations (Y, i.e., 
dependent variable) and the final estimates of θ, Ω, and 
Σ. The estimates of each subject’s η ( ) has several names- 
realized η, post hoc η, empirical Bayes estimate (EBE) of 
η, or maximum a posteriori (MAP) estimate of η. There 
are several numerical methods to estimate the aforemen-
tioned PK/PD parameters. The available estimation methods 
from NONMEMⓇ VI and their characteristics are as follows 
[3]. FO method employs “First Order” linear approximation 
of F with respect to η. Laplacian method (L) uses “Laplacian” 
integral approximation of the objective function using up 
to the second order partial derivatives. FOCE method 
stands for “First Order Conditional Estimation,” for which 
individual η ( ) is estimated during the minimization process 
[3]. Individual η estimates ( ) are not calculated during 
the minimization process for the FO method, however they 
can be estimated with the final θ, Ω, and Σ with the 

POSTHOC option. In the FOCE or Laplacian method, com-
putation of the individual η estimates ( ) is necessary dur-
ing the minimization process. The difference of FOCE objec-
tive function with respect to the Laplacian objective func-
tion is the use of the first order partial derivatives for the 
linear approximation whereas the Laplacian method uses 
up to the second order partial derivatives [4]. The computa-
tion time increases in the order of FO, FOCE, and Laplacian. 
The INTERACTION estimation option considers interaction 
of η and ε, and uses   instead of 0 for η during the calcu-
lation of variance of Y. INTERACTION option does not af-
fect the output for the additive residual error model, but 
produces different estimates which are regarded as more 
accurate for other residual error models (proportional error, 
combined additive and proportional error, power function 
error, etc.).
  When f1 is linear with respect to η, joint objective func-
tion is used for estimation of θ, Ω, Σ, and [5]. When f1 
is nonlinear with respect to η, NONMEM constructs a sepa-
rate objective function to estimate EBE in addition to the 
objective function to estimate θ, Ω, and Σ. Objective func-
tion for EBE in NONMEMⓇ as well as ADAPT 5 [6], a simi-
lar PK/PD modeling and simulation software, is as follows:

  
[ ] i

1T
i

j

2
ij

2
ijij

2
ijii ηΩη/σ)F(Ylogσ)η2LL()ηO( rrrr −∑ +−+=−=

,
Equation 2

where ij denotes j-th observation of the i-th individual, and  
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is the log-likelihood. 

  The uncertainty of the estimated θ, Ω, Σ, and   can 
be obtained by computing the corresponding standard error 
which is the standard deviation of estimates. However, spe-
cial consideration is required for   because there is an up-
per limit for the uncertainty in  . Even if there are no data 
for a particular individual,   (estimated inter-subject varia-
bility for the population data at hand) can be an estimate 
of the uncertainty about   of this individual, because of 
the assumption that the individual belongs to the pop-
ulation characterized by  . For this case, individual η 
shrinkage, the standard error of divided by the correspond-
ing  , could be a better measure of uncertainty [7].
  In NONMEMⓇ VI, the standard error of EBE of   can 
be computed using the following asymptotic expression for 
covariance of an estimate, assuming that the estimated θ, 
Ω, and Σ are the true values [5].
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  The usefulness of EBE of η is manifold. Individual PK/PD 
parameters and accordingly individual drug concentrations 
or effects are described using EBE [8-10]. EBE can be used 
for screening covariates for the structural model develop-
ment [11]. If relationships between covariates and EBEs 
do not exist, EBE theoretically should have no trend with 
the covariates. Apparent relationship between EBE and co-
variate indicates the necessity of further refining the struc-
tural model, for example, including that covariate in the 
structural model. However, such a method is not recom-
mended when there is difference between the empirical dis-
tribution of   and the estimated Ω, i.e., when the shrinkage 
is greater than about 20%. The empirical distribution of 
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Table 2. Comparison of four pharmacokinetic models

Model A B C D

Dataset THEO THEO PHENO PHENO
Administration
 route

Oral Oral Intravenous Intravenous

Number of
 compartments

1 1 1 1
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Ω matrix Full block matrix Full block matrix Full block matrix Full block matrix
Residual variability
 model 21 εε +⋅+= FFY 21 εε +⋅+= FFY 21 εε +⋅+= FFY εθθ ⋅⋅++= FFY 2

5
2

4

Σ matrix Diagonal matrix Diagonal matrix Diagonal matrix Variance of ε is fixed at 1.
Theta estimation
 results by FOCE
 with interaction
 method

θ Point
 estimate

SE θ Point
 estimate

SE θ Point
 estimate

SE θ Point
 estimate

SE

θ1 1.49 0.301 θ1 1.49 0.601 θ1 0.448 0.0315 θ1 0.448 0.0315
θ2 32.4 1.68 θ2 32.9 4.55 θ2 1.38 0.112 θ2 1.38 0.112
θ3 0.0873 0.00417 θ3 0.0872 0.00317 θ3 0.00483 0.000244 θ3 0.00483 0.000244

Table 1. Comparison of the two datasets

Dataset THEO PHENO

Drug Theophylline Phenobarbital
Administration route Oral Intravenous
Dose 320 mg fixed Various
Dosing schedule Single Multiple
Number of subjects 12 59
Number of all observations 132 155
Sampling density Dense (11 observations/subject) Sparse (1∼6 observations/subject)

EBE can be used to test the normal distribution assumption 
on Ω, or the validity of the mixture model, or the necessity 
of using some other kind of nonparametric distribution. 
Since EBEs are used in the objective function calculation 
in FOCE or Laplacian method, both methods rely on accu-
rate EBEs. In NONMEMⓇ VI, EBE can be used as support 
points to calculate the joint density for NONPAR (nonpara-
metric) estimation option [12]. 

Two datasets and four population pharmacokinetic 
models

  The two datasets in NONMEMⓇ VI distribution media, 
THEO and PHENO, were used to compare different meth-
ods of computing the SE of EBE. These datasets are readily 
available and the use of these public datasets makes it easy 
to compare the results of other available methods of the 
future.
  THEO dataset has 132 observations from 12 subjects. 
There are 11 observations per subject following an oral ad-
ministration of 320 mg theophylline. Therefore THEO data-
set can be regarded as an intensively sampled dataset. 
PHENO dataset has 155 observations from 59 neonates 
with multiple intravenous administrations of phenobarbital. 
There are 1 to 6 observations per subjects, which can be 
regarded as a sparsely sampled dataset (Table 1).
  Using the two population datasets, four different PK 

models were tested for the calculation of the SE of EBE 
of η. One compartment PK model with variations in the 
structural part or residual error model was used to fit the 
test datasets. Models A and B used THEO dataset while 
Models C and D used PHENO dataset. All of the individual 
PK parameters were modeled using log-normal distribution 
as in Equation 1. Models B, C and D had covariate effect 
on the typical volume of distribution V while Model A had 
none. All the models had block omega matrix, and used 
combined proportional and additive residual error model. 
The four tested models are summarized in Table 2. The 
model prediction F for each dataset can be calculated as 
follows.
  For THEO dataset (one compartment PK model with oral 
administration),
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　For PHENO dataset (one compartment PK model with 
intravenous administration),
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V
DoseF ⋅−⋅= , Equation 5

using the superposition or the convolution of input and dis-
position function.
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Fig. 1. NONMEMⓇ VI control stream to obtain standard error of 
empirical Bayes estimates using POSTV.

Three computation methods for the standard error of 
EBE

Method 1. User written function in R
  To compute the standard error of EBE of η, $PRED rou-
tine and objective function routine for EBE (OBETA.FOR 
in NONMEMⓇ VI) need to be coded. R 2.7.1 and R 2.8.1 
for MS-Windows were used as programming tools. Objective 
function routine for θ, Ω and Σ can also be coded and fitted. 
However due to the very long computation time, final esti-
mates of θ, Ω and Σ from NONMEMⓇ run were used to 
estimate EBEs and their standard errors. 
  The role of $PRED routine in NONMEMⓇ is to calculate 
F, G and H vectors or matrices. F has different meaning 
in different estimation methods. F is typical prediction 
(PRED) in the FO method and individual prediction 
(IPRED) in the other estimation methods. G is the partial 
derivative of F with respect to η evaluated at  , which is 
necessary to calculate the total objective function value for 
θ, Ω and Σ. For the estimation of EBE, G matrix is not 
necessary because the total objective function value does 
not have to be calculated. H is the partial derivative of Y 
with respect to ε, which is necessary for the calculation 
of σ2

ij in the objective function for EBE.
  For minimization, “L-BFGS-B” algorithm in ‘optim’ func-
tion was used with zero initial values. Other minimization 
algorithms in R showed almost the same results with more 
than three identical digits. The R codes for substitution of 
$PRED and OBETA.FOR are shown in the appendix. This 
method uses explicitly equation 3 and it is well-known and 
described in many textbooks. Therefore we chose this meth-
od for the calculation of SE of EBE as a standard one.

Method 2. PsN 2.2.6 or later
  PsN is a free software for pre- and post-processing of 
NONMEMⓇ runs and outputs, developed by the Pharma-
cometrics Research Group at Uppsala University and avail-
able at http://psn.sf.net/. One added feature of the PsN 2.2.6 
with respect to the previous versions is the computation 
of standard errors of EBE of η. The new command for esti-
mating the SE of EBE of η is ‘-se_of_eta.’ To do this, PsN 
Internally generates modified NONMEMⓇ control stream 
and dataset for each subject. Parameters θ, Ω and Σ are 
fixed at the values obtained from the estimation step for 
all the subjects. ETAs in the original model are replaced 
with new added THETAs to obtain the standard errors of 
these added THETA estimates. Modified dataset for each 
subject has newly appended rows as many as the number 
of etas, and EBAY (previously TYPE) column to classify the 
DV types. PsN fits each subject data one by one with 
MATRIX=R option in $COVARIANCE. Then the standard 
errors of the added THETAs are the standard errors of the 
original EBE of η’s [13]. 

Method 3. POSTV matrix within NONMEMⓇ VI
  POSTV or ROCM36 is a matrix that is not very well docu-
mented in NONMEMⓇ VI User Guide. The only available 
explanation about ROCM36 in NONMEM help is “individu-
al’s posterior variance-covariance matrix.” However, the 
square root of the diagonal elements of POSTV matrix can 
be used to calculate the SE of EBE of η. Technical difficulty 
in using POSTV is that the elements are very frequently 
updated so that if the matrix is printed, the amount will 
be too bulky. To avoid this problem and obtain one line out-

put per subject, verbatim code must be used. NONMEMⓇ 
control stream for extracting the diagonal elements of 
POSTV matrix is shown in Fig. 1. 
  To print out the POSTV matrix, three new variables have 
to be defined: PPSTV1, PREVID, and CVRSTEP. PPSTV1 
retains the first element of the previous POSTV matrix, 
and PREVID delivers ID of current record (NIREC) to the 
next call of $ERROR routine. CVRSTEP is set to 1 during 
the $COVARIANCE step. The INCLUDE statement is nec-
essary because LVR, defined in SIZES file, is necessary to 
define the size of the matrix POSTV. The POSTV matrix 
is available through ROCM36 (presumably ‘read only com-
mon variable 36’). The contents of the POSTV matrix is 
updated very frequently even during the computation of θ, 
Ω and Σ. Change in POSTV(1,1) value for the same subject 
number (NIREC) indicates that minimization process 
reached the $COVARIANCE step. To obtain the SE of EBE, 
the square roots of the diagonal elements of POSTV have 
to be printed using, for example, file stream 56 (i.e., ‘fort.56’). 
  Finally, file stream 56 has to be closed at ICALL=3 step. 
This is not necessary if extra files are not opened within 
$TABLE step. However, explicit closing of the open file 
stream is recommended for safe termination of NONMEMⓇ 
VI. If $PRED is used instead of PREDPP (ADVAN sub-
routines), verbatim code has to be placed within the $PRED 
routine.

Comparison among computation methods

  To compare the computed SEs of EBEs among different 
methods, correlation coefficients were calculated. However, 
all of the correlation coefficient values were so close to one 
that small differences were not properly captured in the 
preliminary analysis. Therefore the percentage of observing 
5 percent or greater difference with respect to the result 
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Table 3. Frequency (%) of PsN or NONMEMⓇ POSTV results differing greater than 5% with respect to the R code computation 
result (Method 1)

Estimation
 method

Model A theophylline 
base model

Model B theophylline 
model with1 covariate

Model C phenobarbital 
model with combined error

Model D phenobarbital 
model with combined error 

and fixed sigma

PsN
(M 2)

POSTV
(M 3)

PsN
(M 2)

POSTV
(M 3)

PsN
(M 2)

POSTV
(M 3)

PsN
(M 2)

POSTV
(M 3)

 FO 72 86 64 72 5.9 21 6.8 21
 FOCE  0 17  0 17 5.9  0.85 5.1  0.85
 FOCEI  0 14  0   2.8 0  0.85 0  0.85
 L  0  0  0  0 5.9.  0 5.1  0
 LI  0  0  0  0 0  0 0  0

FO, first order; FOCE, first order conditional estimation; FOCEI, first order conditional estimation with interaction; L, laplacian; 
LI, laplacian with interaction; NA, not available.

from the theoretical method (Method 1: user written func-
tion of Equations 2∼5 in R) was employed as the most sen-
sitive way of comparison.

Computing environment

  The computation of SE of EBE using POSTV matrix was 
tested using NONMEM VI Level 1.2 and 2.0 under MS- 
Windows XP. GNU g77 version 0.5.25 and Compaq Visual 
Fortran version 6.6c were used as compilers. As for the R 
software, R 2.7.1 and R 2.8.1 for MS-Windows were used.

RESULTS

  Five estimation methods were tested for each model: FO 
(First Order), FOCE (First Order Conditional Estimation), 
FOCEI (First Order Conditional Estimation with Interac-
tion), L (Laplacian), and LI (Laplacian with Interaction). 
FOI (First Order with Interaction) was explored using 
Methods 1 & 2, however the result was not used for compari-
son because POSTV was not available with METHOD= 
ZERO INTERACTION option. Other estimation options 
were set at default values except that the maximum num-
ber of function evaluation (MAXEVALS) was set at a gene-
rous number of 9999. As a measure of comparing the results 
from the three methods, the frequency of discrepancy in 
the results greater than 5% compared with the R code re-
sult (Method 1) is shown in Table 3. Method 1 is used as 
reference to compare the degrees of discrepancy of computa-
tion results from the other methods, because the R code 
was straightforwardly implemented equation 3. On the oth-
er hand, the detailed computation algorithms of the other 
two methods are either unavailable to the public or very 
difficult to track. EBEs and standard errors computed by 
method 1 are in appendix tables. 
  There was no discernable difference in the point esti-
mates of EBE of η among all of the three methods, for the 
various estimation methods and the datasets. The degree 
of differences in the results from the three computation 
methods for the SE of EBE of η depended on the employed 
estimation method. All the three methods produced almost 
the same results when Laplacian estimation method (L or 
LI) was used. For the conditional estimation methods (FOCE 
or FOCEI), there was no noticeable difference between the 
computed SE estimates from R code (Method 1) and PsN 

(Method 2). When FOCEI estimation method was used for 
the sparse sampling dataset of phenobarbital, the percent-
age occurrence of POSTV method results (Method 3) differ-
ing more than 5% compared with R code result (Method 
1) was less than 1%. For the extensive sampling dataset 
of theophylline, greater than 5% difference in EBEs occurs 
3% to 17% with FOCEI. The degree of difference got larger 
for the simple FO estimation. Greater than 5% difference 
between Method 1 and Method 3 occurred more frequently 
(21% to 86%) with the FO method.

DISCUSSION

  Estimation results are usually provided as predicted 
mean or typical values for the unknown parameters of the 
system along with measures of inter-correlation and pre-
cision associated with the parameter estimates. Standard 
errors of the parameters are easy to explain and under-
stand about the precision of the parameters. In population 
analysis where hierarchical structure (ie, population level 
and individual level) is involved, investigation of the SE 
of EBE for individual level can be used as an enhanced 
model diagnosis tool to assess the precision of the estimated 
inter-subject variability parameter as well as for simulation 
considering the uncertainty in the inter-subject variability, 
in addition to the SE of population parameters.With the 
availability of SE of EBE during simulation, the discussion 
about the central tendency or outlying values for individual 
predicted values can be possible, which can be a useful in-
formation for developing indivualized therapy. 
  Three methods of computing the standard error of empiri-
cal Bayes estimate of the inter-subject variability parame-
ter η for NONMEM were explored and the performance 
was evaluated. The SE of EBE of the inter-subject varia-
bility parameter η can be computed in a direct and robust 
way by using the POSTV matrix in NONMEMⓇ VI without 
additional postprocessing efforts. The POSTV matrix is not 
available in other versions of NONMEMⓇ. However the ele-
ments of the POSTV matrix are available as ETC columns 
in the .phi file from the new version of NONMEMⓇ 7. Such 
SE of EBE from NONMEMⓇ 7 was almost identical with 
the POSTV from NONMEMⓇ VI. The proposed simple and 
robust method of computing SE of EBE using POSTV is 
not reported in the standard NONMEMⓇ output file. The 
reason might be that there are other methods for computing 
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SE of EBE using uncertainties associated with θ, Ω and 
Σ together. The computation differences with respect to the 
result from R code may be due to the fact that R function 
“optim” uses numerical calculation of gradient and hessian 
while NONMEMⓇ uses analytical partial derivatives parti-
ally for the PK models using ADVAN2 routine. However, 
when LAPLACIAN is used, NONMEMⓇ also uses numer-
ical methods for gradient and hessian calculation so that 
the result showed no difference with respect to PsN and 
R.
  There are a few limitations of using POSTV for obtaining 
SE of EBE. The method assumes no uncertainties for the 
estimated θ, Ω and Σ, and cannot be used with the METHOD= 
ZERO INTER estimation option. The discrepancies of the 
computation results with respect to the other two computa-
tion methods were observed, and the differences might be 
attributed to the analytical versus numerical calculation of 
derivatives.
  PsN is a convenient tool to obtain SE of EBE, however 
PsN fits modified model to the modified individual datasets. 
In addition, PsN may produce quite different point esti-
mates of EBE when the EBE values are close to zero. There-
fore, computing the point estimate of EBE using individual 
data should be used with caution. The source of this differ-
ence might be due to the different minimization algorithm 
for EBE computation to the algorithm for the estimation 
of θ, Ω and Σ. Not much is known about what algorithm 
is used for computing EBE, whereas quasi-Newton type de-
rivative free algorithm (a variant or modification of deriva-
tive free Davidon-Fletcher-Powell algorithm in ZXMIN1. 
FOR) is used for estimating θ, Ω and Σ.
  In conclusion, POSTV matrix can be used for a simple 
and robust computation of SE of individual ETA values in 
NONMEMⓇ VI. The results were comparable with other 
computation methods. The degree of discrepancy was small-
est in LI method, smaller in FOCEI than FO.
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Fig. 2. R subtistute of $PRED for 
Model A.

Fig. 4. R subtistute of $PRED for 
Model C.

Fig. 3. R subtistute of $PRED for 
model B.

Appendix.
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Fig. 5. R subtistute of $PRED for 
model D.

Fig. 6. R subtistute of OBETA.FOR 
(objective function for EBE) for 
models A and B*. *R substitute for 
Model C and D is slightly different to 
coerce matrix structure of Hi and ETAi 
in the code above.
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Table 4. EBEs and their standard errors for Model A (FOCEI option) by method 1 using R optim function

ID
η1 η2 η3

Point estimate Standard error Point estimate Standard error Point estimate Standard error

 1 －0.10466 0.14520 －0.19254 0.04369 －0.27939 0.05512
 2   0.32902 0.16955   0.05632 0.04358   0.04407 0.05868
 3   0.41111 0.17290   0.04390 0.04367 －0.01291 0.05774
 4 －0.34417 0.13957 －0.04208 0.04418   0.01564 0.05731
 5 －0.03031 0.14389 －0.10883 0.04227 －0.09572 0.05779
 6 －0.47109 0.14818   0.13799 0.04801   0.23277 0.05933
 7 －0.85824 0.12983   0.00292 0.04686   0.14643 0.05878
 8 －0.06824 0.15727   0.07083 0.04545   0.07920 0.05855
 9   1.33496 0.26126   0.17745 0.04348 －0.01260 0.06186
10 －0.71317 0.12374 －0.21453 0.04339 －0.14919 0.05675
11   0.86559 0.20085   0.17634 0.04457   0.07779 0.05967
12 －0.49617 0.12225 －0.13472 0.04210 －0.02920 0.05792

Table 5. EBEs and their standard errors for Model B (FOCEI option) by method 1 using R optim function

ID
η1 η2 η3

Point estimate Standard error Point estimate Standard error Point estimate Standard error

 1 －0.00065 0.13075 －0.26386 0.02720 －0.37886 0.03707
 2   0.37032 0.15483   0.02740 0.02761   0.01878 0.03763
 3   0.40337 0.15332   0.01455 0.02692 －0.00155 0.03669
 4 －0.27287 0.12438 －0.04520 0.02753 －0.04971 0.03768
 5 －0.15913 0.12483   0.02244 0.02657   0.04108 0.03634
 6 －0.37606 0.12898   0.07561 0.03007   0.12949 0.04118
 7 －0.86788 0.11149   0.06925 0.02954   0.14771 0.04056
 8 －0.08076 0.13670   0.05114 0.02848   0.07791 0.03910
 9   1.40848 0.24572 －0.00333 0.02825 －0.08312 0.03858
10 －0.77277 0.10584 －0.09231 0.02657 －0.08958 0.03652
11   0.73681 0.17181   0.15723 0.02805   0.18478 0.03804
12 －0.50552 0.10860 －0.02146 0.02667 －0.00266 0.03670
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Table 6. EBEs and their standard errors for Model C and D (FOCEI option) by method 1 using R optim function

ID
η1 η2

ID
η1 η2

Point 
estimate

Standard 
error

Point 
estimate

Standard 
error

Point 
estimate

Standard 
error

Point 
estimate

Standard 
error

 1 －0.0137 0.0648 －0.0200 0.0934 31 －0.0771 0.0845 －0.0400 0.1073
 2 －0.1445 0.0578 －0.1045 0.0904 32   0.2017 0.0618   0.1233 0.0959
 3   0.1274 0.0584   0.0919 0.0899 33 －0.0533 0.0654 －0.0369 0.0974
 4 －0.0441 0.0551 －0.0327 0.0896 34 －0.0494 0.0643 －0.0302 0.0958
 5   0.2161 0.0628   0.1394 0.0915 35 －0.2064 0.0587 －0.1432 0.0920
 6   0.0523 0.0568   0.0098 0.0882 36   0.0349 0.0608   0.0692 0.0768
 7   0.0200 0.0580   0.0167 0.0875 37   0.0036 0.0630 －0.0040 0.0895
 8 －0.1404 0.0515 －0.0644 0.0894 38   0.0827 0.0559   0.0550 0.0736
 9 －0.1202 0.0511 －0.1205 0.0733 39   0.0209 0.0542   0.0397 0.0751
10   0.0148 0.0558   0.0080 0.0886 40   0.1439 0.0742   0.0751 0.1051
11   0.2532 0.0819   0.1642 0.1010 41   0.1034 0.0586   0.0594 0.0967
12   0.0134 0.0591 －0.0264 0.0740 42   0.2810 0.0777   0.1873 0.0998
13 －0.1412 0.0598 －0.0935 0.0882 43 －0.0853 0.0883 －0.0445 0.1080
14 －0.0372 0.0537   0.0455 0.0761 44   0.0468 0.0617   0.0183 0.0777
15   0.0462 0.0644   0.0274 0.0911 45   0.0375 0.0599   0.0194 0.0928
16 －0.0267 0.0535 －0.0436 0.0879 46 －0.0035 0.0904 －0.0018 0.1086
17 －0.0605 0.0533 －0.0517 0.0871 47 －0.0564 0.0818 －0.0330 0.1030
18   0.1443 0.0573   0.1674 0.0750 48 －0.1629 0.0425 －0.1751 0.0816
19   0.0419 0.0560   0.0265 0.0874 49   0.0631 0.0544   0.0263 0.0878
20 －0.0596 0.0534 －0.0271 0.0902 50 －0.1693 0.0436 －0.0831 0.0890
21 －0.0389 0.0578 －0.0285 0.0774 51   0.0866 0.0550   0.0349 0.0880
22 －0.0366 0.0670 －0.0198 0.0995 52 －0.0984 0.0567 －0.0213 0.0883
23 －0.0645 0.0560 －0.0115 0.0904 53 －0.0648 0.0636 －0.0493 0.0984
24   0.0796 0.0498   0.0787 0.0812 54 －0.1932 0.0461 －0.1200 0.0902
25   0.1831 0.0436   0.0685 0.0835 55   0.1910 0.0835   0.1262 0.1004
26 －0.1442 0.0591 －0.0881 0.0923 56 －0.0488 0.0916 －0.0275 0.1069
27 －0.1968 0.0612 －0.1042 0.0959 57 －0.0012 0.0655   0.0043 0.0943
28   0.0331 0.0945   0.0173 0.1095 58 －0.0764 0.0543 －0.0323 0.0907
29 －0.0140 0.0830 －0.0086 0.1017 59 －0.1088 0.0510 －0.0747 0.0882
30   0.0611 0.0722   0.0313 0.0844


