• Title/Summary/Keyword: Similar Trajectory

Search Result 162, Processing Time 0.027 seconds

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Detection of Moving Objects in Crowded Scenes using Trajectory Clustering via Conditional Random Fields Framework (Conditional Random Fields 구조에서 궤적군집화를 이용한 혼잡 영상의 이동 객체 검출)

  • Kim, Hyeong-Ki;Lee, Gwang-Gook;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1128-1141
    • /
    • 2010
  • This paper proposes a method of moving object detection in crowded scene using clustered trajectory. Unlike previous appearance based approaches, the proposed method employes motion information only to isolate moving objects. In the proposed method, feature points are extracted from input frames first and then feature tracking is followed to create feature trajectories. Based on an assumption that feature points originated from the same objects shows similar motion as the object moves, the proposed method detects moving objects by clustering trajectories of similar motions. For this purpose an energy function based on spatial proximity, motion coherence, and temporal continuity is defined to measure the similarity between two trajectories and the clustering is achieved by minimizing the energy function in CRFs (conditional random fields). Compared to previous methods, which are unable to separate falsely merged trajectories during the clustering process, the proposed method is able to rearrange the falsely merged trajectories during iteration because the clustering is solved my energy minimization in CRFs. Experiment results with three different crowded scenes show about 94% detection rate with 7% false alarm rate.

Location-based System for Tracking Similar Trajectories Using Hybrid Method (하이브리드 기법을 이용한 LBS기반의 유사궤적 추적시스템)

  • Han, Kyoung-Bok;Kwon, Hoon;Lee, Hye-Sun;Kwak, Ho-Young
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.6
    • /
    • pp.9-21
    • /
    • 2007
  • In this paper, the hybrid methods are suggested, which use the direction angle information to present running trajectory and track the past locations through a small amount of vehicle's location information. In order to prove the effectiveness of the new technique suggested here, vehicle's location information are collected by running the vehicles moving objects under various conditions. Using the location informations and direction angle information collected with time intervals, the vehicl e's location information is abstracted, compared and analyzed. and I have proved that the suggested techniques are more effective by comparing them with others in various methods such as GPS TrackMaker, difference image techniques, consistency comparison, quantity comparison, vehicle's running distances and so on.

Influence of Projectile Surface Defects on the Trajectory (탄체 외형결함이 탄도에 미치는 영향)

  • Kim, Ki-Su;Shin, Choon-Sik;Yoon, Sung-Min;Park, Chang-Kyu;Kang, Kyeong-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.279-282
    • /
    • 2011
  • Projectile can be damaged during the storage and handling. Maximum range calculation of the ammunition was performed on the assumption that each projectiles have 1.5mm/3.3mm axisymetric dent on the surface. Drag coefficient for trajectory calculation was delivered from CFD using commercial software FLUENT. In the result of CFD, damaged projectiles those have 1.5mm/3.3mm axisymetric dent have similar drag coefficient compare with normal projectile in the region of subsonic. But, in supersonic region, drag coefficient was increased 3%, 9% each in average. In the result of trajectory calculation, Maximum rage was decreased 1%, 3% each.

  • PDF

A Study on a Trajectory of Mast Arm End-Effector (마스트 암 엔드-이펙터 궤적에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.151-157
    • /
    • 2006
  • As people's living standard is being improved, human works are being replaced by robots. However, because most robots are used in process industry, fixed on the ground, we need to develop human robots that have wide applications. Currently many researches are being conducted on human robots with the object of replacing human works, but because of lack of relevant hardware, such robots are being applied limitedly to very simple tasks. To overcome the limitation, the present study developed a kinematical mechanism and a controller. Based on human kinematics, the shoulders and the arms were composed of master arms with 3 degree of freedom, and we reproduced motions similar to human ones through the characteristics of joint variables and experiment on the trajectory of the end effector.

GAS-DYNAMICAL FRICTION OF A PERTURBER MOVING ON A CIRCULAR ORBIT

  • Kim, Hyo-Sun;Kim, Woong-Tae
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.179-182
    • /
    • 2007
  • Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided $V_pt=2R_p,\;where\;V_p\;and\;R_p$ are the velocity and orbital radius of the perturber, respectively.

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Recommendation of Best Empirical Route Based on Classification of Large Trajectory Data (대용량 경로데이터 분류에 기반한 경험적 최선 경로 추천)

  • Lee, Kye Hyung;Jo, Yung Hoon;Lee, Tea Ho;Park, Heemin
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • This paper presents the implementation of a system that recommends empirical best routes based on classification of large trajectory data. As many location-based services are used, we expect the amount of location and trajectory data to become big data. Then, we believe we can extract the best empirical routes from the large trajectory repositories. Large trajectory data is clustered into similar route groups using Hadoop MapReduce framework. Clustered route groups are stored and managed by a DBMS, and thus it supports rapid response to the end-users' request. We aim to find the best routes based on collected real data, not the ideal shortest path on maps. We have implemented 1) an Android application that collects trajectories from users, 2) Apache Hadoop MapReduce program that can cluster large trajectory data, 3) a service application to query start-destination from a web server and to display the recommended routes on mobile phones. We validated our approach using real data we collected for five days and have compared the results with commercial navigation systems. Experimental results show that the empirical best route is better than routes recommended by commercial navigation systems.

A Numerical Study on Air-Assisted Breakup of Fuel Droplets (연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구)

  • Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF