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SOME LIMIT THEOREMS RELATED TO

MULTI-DIMENSIONAL DIFFUSIONS IN

A RANDOM ENVIRONMENT

Daehong Kim

Abstract. In this paper, we consider a multi-dimensional diffusion pro-
cess in a self-similar random environment and prove a limit theorem for
the shape of the full trajectory of the diffusion by using the localization

phenomenon.

1. Introduction

LetW be the space of continuous functions onRn vanishing at the origin and
let Q be a probability measure on it. We call an element of W an environment.
For given an environment w, let Pw

x be the probability measure on Ω, the
canonical path space of real-valued continuous functions from [0,∞) to Rn,
such that {X(t),Pw

x , x ∈ Rn} is a diffusion process with generator

(1) Lw =
1

2
ew

n∑
i=1

∂

∂xi

(
e−w ∂

∂xi

)
.

It is well known that such a process X(t) can be constructed from a Brownian
motion by a drift transformation ([2]).

Let Px be the probability measure on W × Ω defined by Px(dwdω) =
Q(dw)Pw

x (dω). Then the diffusion X(t) can be regarded as a stochastic pro-
cess defined on the probability space (W×Ω,Px) and it is called as a diffusion
process in a random environment. This process has a close connection with the
model of Sinai’s random walk and exhibits some interesting features ([1], [5],
[8], [9], [10]). Among those, Brox [1] showed when n = 1 and w(x) is a Brown-
ian environment that there exists a nontrivial measurable function b1 : W 7→ R
such that for any ε > 0,

(2) Px

(∣∣α−2X (eα)− b1(w)
∣∣ > ε

)
−→ 0 as α→ ∞
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which is the so-called subdiffusivity. This result was a consequence of a local-
ization phenomenon, the diffusion is trapped in some valleys of its potential w,
and was extended to a large class of random environments ([5]). However, all
their methods are heavily rely on the one dimensional situation.

The first analogue result of (2) in higher dimensional cases was obtained
by Mathieu [8]. The novelty of his work was the introduction of some analytic
approaches such as asymptotics of the first non-zero eigenvalue of the generator
(1) with a small noise and the related Dirichlet form theory. Motivated by this
work, Tanaka [13] also proved that {X(t),Px, x ∈ Rn} is to be recurrent for
all dimensions.

We are interested in the long time asymptotics for the shape of the full
trajectory of the multi-dimensional diffusion X(t) in a random environment.
More precisely, let us consider the random set of trajectory of the diffusion
X(t) up to time t:

X (t) := {X(s) : 0 ≤ s ≤ t},
where A stands for the closure of a set A. We may call the process X (t) on
the probability space (W × Ω,Px, x ∈ Rn) a set valued diffusion process in a
random environment. Our purpose in this article is to extend the result (2) of
Brox to the case of set valued diffusion X (t).

To state our main theorem precisely, let K be a family of non-empty compact
sets of Rn and Dr(w) the connected component containing the origin of the
sub-level domain {x ∈ Rn : w(x) < r}. Let dH be the Hausdorff distance on
K, that is, for K1,K2 ∈ K

dH(K1,K2) = inf {ε > 0 : Uε(K1) ⊃ K2, Uε(K2) ⊃ K1} ,

where Uε(K) denotes the ε-neighborhood of K. Our result is based on some
assumptions for the random characteristics of the environment. The main
result of this article is stated as follows:

Theorem 1.1. Let f be a probability density on Rn with compact support.
Suppose that

(A.1) For any α > 0 and any fixed λ > 0, the environment

{wα,λ(x) := α−1w(αλx), x ∈ Rn}

has the same law as {w(x), x ∈ Rn} under Q, namely (W, Q) is a
λ−1-self-similar random environment.

(A.2) For Q-a.s. Dr(w) is bounded for any r > 0 and for Q-a.s. w(x) ≥ 0
for all x ∈ Rn.

Then for any r > 0, ε > 0 and any fixed λ > 0,

Pf

(
dH

(
α−λX (eαr) ,Dr (wα,λ)

)
> ε
)
−→ 0 as α→ ∞.

That is, the law of the random set α−λX (eαr) under Pf converges to the law

of the compact set Dr(w) under Q as α→ ∞.
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The natural and typical examples of the random environment satisfying the
assumptions (A.1) and (A.2) can be provided by W = {w : w(x) = |B(x)|, x ∈
Rn}, where B(x) is a Lévy’s Brownian motion with a n-dimensional time
(cf. [8]) and W = {w : w(x) =

∑n
i=1 |B(xi)|, x = (x1, x2, . . . , xn) ∈ Rn},

where {Bi(x)}1≤i≤n is a family of one dimensional Brownian motions which
are mutually independent (cf. [12]).

Our theorem tells us that the shape of theK-valued stochastic process rλX (t)
converges very slowly to that of the connected component containing the origin
of {x ∈ Rn : w(x) < r} by the effect of environment.

To prove our theorem, we address in Section 2 some notations and facts on a
one parameter family of diffusion processes and their associated Dirichlet forms
(for the general theory of Dirichlet forms, we refer readers to [2]). In Section
3, we obtain some asymptotic results on the first exit times of parameterized
diffusions originally due to Mathieu [8] with some modifications (cf. [6], [7]).
The proof of the main theorem will be given in Section 4. A key point of
the proof is to use a modified environment to show that the parameterized
diffusions enter any ball before leaving the domain Dr(w).

2. Preliminaries on parameterized diffusions

For a given w ∈ W, consider a symmetric closable form on L2(Rn; e−αwdx)
(energy form) parameterized by α > 0:

(3) Eαw(u, v) =
1

2

∫
Rn

∇u(x) · ∇v(x) e−αw(x)dx, u, v ∈ C1
0 (R

n),

where C1
0 (R

n) is the space of continuously differentiable functions with compact
support in Rn. Then (Eαw,H1(Rn)) becomes a regular (local) Dirichlet form
defined by the smallest closed extension of (3) (see [2]). Here H1(Rn) = {u ∈
L2(Rn) : ∂iu ∈ L2(Rn), 1 ≤ i ≤ n}. By a general theory of Dirichlet forms,
there exists a diffusion process associated with (Eαw,H1(Rn)) and we denote
it by {X(t),Pαw

x , x ∈ Rn}. Let f be a probability density function on Rn and
set

Pf (·) :=
∫
Rn

Px(·)f(x)dx

for a probability distribution Px. Then {X(t),Pαw
f } can be regarded as the

diffusion process with an initial distribution f of the generator (1) replaced w
by αw.

For a fixed λ > 0, we simply write as

(4) wα(x) := α−1w(αλx), fα(x) := αλnf(αλx), x ∈ Rn.

Let {Rw
β }β>0 be the resolvent of {X(t),Pw

f }. Then for any φ ∈ L2(Rn; e−wdx)

and v ∈ H1(Rn),

(5) Ew
β

(
Rw

β φ, v
)
=

∫
Rn

φ(x)v(x)e−w(x)dx,
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where Ew
β (ϕ, ψ) := Ew(ϕ, ψ) + β

∫
Rn ϕ(x)ψ(x)e

−w(x)dx for ϕ, ψ ∈ H1(Rn). By

the change of variable with x = αλy, the equation (5) yields that

Eαwα

α2λβ

(
Rw

β φ(α
λ·), v(αλ·)

)
=

∫
Rn

α2λφ(αλy)v(αλy)e−αwα(y)dy

= Eαwα

α2λβ

(
Rαwα

α2λβ
(α2λφ)(αλ·), v(αλ·)

)
.

So the fact that {α2λRαwα

α2λβ
}β>0 is the resolvent of {αλX(α−2λt),Pαwα

fα
} implies

the following lemma.

Lemma 2.1. For w ∈ W and α > 0,

(6)
{
α−λX(t),Pw

f

} d
=
{
X(α−2λt),Pαwα

fα

}
,

where
d
= means the equality in distribution.

For any r > 0, let r(α) := r − (2λ/α) logα. Clearly r(α) → r as α → ∞.
Then (6) can be rewritten as

(7)
{
α−λX(eαr),Pw

f

} d
=
{
X(eαr(α)),Pαwα

fα

}
by taking t = eαr.

Remark 2.2. Under the assumption (A.1), Pαwα
· and Pαw

· are same for Q-
a.s.. Therefore we see from (7) that a subdiffusivity problem of the diffusion
X(t) is reformulated as an α-asymptotic problem of the parameterized diffusion
{X(eαr(α)),Pα

fα
}. Here Pα

x (dwdω) := Q(dw)Pαw
x (dω).

Let D be an arbitrary bounded domain in Rn. We introduce the so-called
3-depths of D relative to an environment (cf. [4], [8]): the depths of D,

d = d(D,w) = inf
∂D

w − inf
D
w, d′ = d′(D,w) = sup

D
w − inf

D
w

and the critical depth (or elevation) of D,

c = c(D,w) = sup
x,y∈D

{
inf
ϕ

sup
t∈[0,1]

w(ϕ(t))− w(x)− w(y)

}
+ inf

D
w,

where ϕ is a continuous path from [0, 1] to D such that ϕ(0) = x, ϕ(1) = y.
Note that the quantities d′, d and c depend only on the landscape of w and do
not depend on any boundary conditions (such as smoothness) of ∂D. Moreover,
it is easy to check that if D ≡ Dr(w) (r > 0), then d′ = d and d > c.

Let H1(D) = {u ∈ L2(D) : ∂iu ∈ L2(D), 1 ≤ i ≤ n} and denotes H1
0 (D) by

the closure of C1
0 (D) in H1(D). It is well known that the absorbing process

of the diffusion {X(t),Pαw
x , x ∈ Rn} on D is by definition the diffusion pro-

cess {X(t),Pαw,D
x , x ∈ D} whose regular Dirichlet form on L2(D; e−αwdx) is

coincided with (Eαw,D,H1
0 (D)), where

Eαw,D(u, v) =
1

2

∫
D

∇u(x) · ∇v(x) e−αw(x)dx
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([2]). On the other hand, by defining H1
∗ (D) := (H1

0 (D) + constant) as
a new Sobolev space, (Eαw,D,H1

∗ (D)) becomes a regular Dirichlet form on
L2(D∗; e−αwdx) as well ([6]). In fact, this form is the smallest one in the
family of Dirichlet forms M = {(Eαw,D,FD) : H1

0 (D) ⊂ FD ⊆ H1(D), 1 ∈
FD}. Here D∗ denotes the one-point compactification of D. Let us denote by
{X(t),Pαw,∗

x , x ∈ D∗} the diffusion process associated with (Eαw,D, H1
∗ (D)).

This process is irreducible and recurrent on D∗. More general profound prop-
erties on this kind of process and its associated Dirichlet form can be found in
[3].

For a notational convenience, we set

u(α) ≻ a if lim inf
α→∞

1

α
log u(α) ≥ a, u(α) ≺ a if lim sup

α→∞

1

α
log u(α) ≤ a.

Let mα(dx) be the normalized underlying measure defined by

mα(dx) = IDZ
−1
α e−αw(x)dx, Zα =

∫
D

e−αw(x)dx.

Note that (1/α) logZα → − infD w as α → ∞. Let γ(α) be the first non-zero
eigenvalue of (Eαw,D,H1

∗ (D)), the so-called spectral gap, defined by

γ(α) = inf
u∈H1

∗(D)

Eαw,D(u, u)∫
D
(u−

∫
D
u dmα)2e−αwdx

.

The following asymptotic lower bound of γ(α) for an arbitrary bounded
domain D of Rn was obtained by [6].

Lemma 2.3. γ(α) ≻ −c.

3. Lemmas on exit times

Let ταwD be the first exit time of the diffusion X(t) out of D, that is, ταwD :=
inf{t > 0 : X(t) /∈ D}. For any β > 0, set hαwβ (x) := Eαw,∗

x (exp(−βταwD ))
the Laplace transform of ταwD , where Eαw,∗

x denotes the expectation relative to
{X(t),Pαw,∗

x , x ∈ D∗}.
In this section, we consider the asymptotics in α of the distribution of

ταwD studied in [6], [8] under some modifications. We note that no addi-
tional condition is imposed (smoothness as like in [8]) on a domain D ⊂ Rn,
and it makes no difference to replace the diffusion {X(t),Pαw

x , x ∈ Rn} by
{X(t),Pαw,∗

x , x ∈ D∗} (or {X(t),Pαw,D
x , x ∈ D}) as far as the exit time distri-

bution from D is concerned.

Lemma 3.1. Let θ(α) be the function such that
∫
D
hαwθ(α)dmα = 1/2.

(i) −d′ ≺ θ(α) ≺ −d.
(ii) Assume d > c. Then for any k > 0,

∫
D
hαwkθ(α)dmα → 1/(1 + k) as

α→ ∞. In particular, set D ≡ Dr(w) (r > 0). Then for any open ball
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B such that B ⊂ D,

(8)

∥∥∥∥hαwkθ(α) − 1

1 + k

∥∥∥∥
L2(B)

−→ 0

as α→ ∞.

Proof. We may assume that d > 0 (otherwise the present lemma is trivial).
Note that it follows from the proof of Theorem 3.1 in [6] that for any ε > 0,

(9)

∫
D

hαwe−α(d−ε)dmα −→ 0 as α→ ∞.

On the other hand, for the absorbing diffusion process {X(t),Pαw,D
x , x ∈ D},

put uDα (t, x) = Pαw,D
x (t < ταwD ). Then by definition,

Eαw,D
(
uDα (t, ·), uDα (t, ·)

)
= lim

s→0

(
uDα (t, ·)− uDα (s+ t, ·)

s
, uDα (t, ·)

)
e−αwdx

= −1

2

∫
D

∂

∂t

∣∣uDα (t, x)
∣∣2 e−αw(x)dx(10)

= −1

2

d

dt
HD

α (t),

where (·, ·)µ denotes the inner product on L2(D;µ) and

HD
α (t) =

∫
D

∣∣uDα (t, x)
∣∣2 e−αw(x)dx.

Let denote ( 12D,H
1
0 (D)) by the Dirichlet form (Eαw,D, H1

0 (D)) when α = 0.
By the boundedness of D, it is transient (Example 1.5.3 in [2]) and thus for
any u ∈ H1

0 (D), it holds that∫
D

u(x)2dx ≤ 2∥RD1∥∞D(u, u),

where RD is the Green operator of (12D,H
1
0 (D)) ([11]). Using this, we have

(11) HD
α (t) ≤ 2∥RD1∥∞eαd

′
Eαw,D

(
uDα (t, ·), uDα (t, ·)

)
.

By combining (10) and (11),

e−αd′
∥RD1∥−1

∞ ≤ − d

dt
logHD

α (t)

that implies

(12) HD
α (t) ≤ HD

α (0) exp
(
−∥RD1∥−1

∞ e−αd′
t
)
.
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Take r′ > 0 such that r′ ∈ (d′, d′ + ε) for any ε > 0. Applying t = eαr
′
to (12),

we see then

Pαw,∗
mα

(
eαr

′
< ταwD

)
= Pαw,D

mα

(
eαr

′
< ταwD

)
= Z−1

α

∫
D

uDα

(
eαr

′
, x
)
e−αw(x)dx

≤ eα(infD w+ε)HD
α

(
eαr

′
)1/2

−→ 0 as α→ ∞,

which implies that

(13)

∫
D

hαw
e−α(d′+ε)dmα −→ 1 as α→ ∞.

Now, (i) of the lemma is a consequence of (9) and (13).
The first assertion of (ii) was proved in Theorem [6] (also, in Theorem II.1 in

[8] related to the reflected Dirichlet form (Eαw,D,H1(D)) under the smoothness
of D). Finally, we prove the last assertion of (ii). The idea of the proof is
originally due to [8], but we need to improve some technical tools in our settings
(D is not smooth). Let B be an open ball such that B ⊂ D ≡ Dr(w) (r > 0)
and rB := maxB w ∈ (0, d). Let B1 be an open ball such that B1 ⊂ B and
rB1 = maxB1

w ∈ (0, d− c). Then for any ε ∈ (0, d− c− rB1),∥∥∥∥hαwkθ(α) − ∫
D

hαwkθ(α)dmα

∥∥∥∥2
L2(B1)

(14)

≤ eαrB1

∥∥∥∥hαwkθ(α) − ∫
D

hαwkθ(α)dmα

∥∥∥∥2
L2(B1;e−αwdx)

≤ γ(α)−1eαrB1Eαw,D
kθ(α)

(
hαwkθ(α), h

αw
kθ(α)

)
≤ ≺ −(d− c− rB1 − ε)

by virtue of Lemma 2.3, Lemma 3.1(i) and the fact that for β > 0

Eαw,D
β (hαwβ , hαwβ ) = Eαw,D

β (hαwβ , 1) = β

∫
D

hαwβ e−αwdx ≤ β.

Therefore we see that (8) holds for the open ball B1 by combining (14) and
the first assertion of (ii). On the other hand, by Poincaré inequality related
to H1(B) for the open ball B, there exists a constant γ−1

B such that for any
ε ∈ (0, d− rB),∥∥∥hαwkθ(α) − ⟨hαwkθ(α)⟩

B

∥∥∥2
L2(B)

≤ γ−1
B

∫
B

∣∣∣∇hαwkθ(α)∣∣∣2 dx
≤ 2γ−1

B eαrBEαw,D
kθ(α)

(
hαwkθ(α), h

αw
kθ(α)

)
(15)

≺ −(d− rB − ε),
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where ⟨h⟩B :=
∫
B
h dx/

∫
B
dx. Hence, for the open balls B1 and B,∥∥∥∥hαwkθ(α) − 1

1 + k

∥∥∥∥
L2(B1)

−→ 0,
∥∥∥hαwkθ(α) − ⟨hαwkθ(α)⟩

B

∥∥∥
L2(B1)

−→ 0

as α→ ∞ and thus

(16)
⟨
hαwkθ(α)

⟩
B
−→ 1

1 + k
as α→ ∞.

Now, applying (16) to (15), we conclude that (8) also holds for any open ball
B such that B ⊂ D. □
Lemma 3.2. Let f be a probability density function on D ≡ Dr(w) (r > 0)
and let fα be the scaled function of f defined in (4). Then for any k > 0,

(17)

∫
D

hαwkθ(α)dfα −→ 1

1 + k
as α→ ∞.

Proof. Let B0 be an open ball centered at 0 satisfying B0 ⊂ D. In view of the
proof of the last assertion of Lemma 3.1(ii), we see that (8) holds for B0 and
its speed of decay is exponential. Note that the support of fα is contained in
B0 for large enough α. So by the similar argument in the proof of Theorem
II.3 in [8], we have∥∥∥∥hαwkθ(α) − 1

1 + k

∥∥∥∥
L2(D;fαdx)

≤ 4

∫
{f≥N}

f(x) dx+ αλnN

∥∥∥∥hαwkθ(α) − 1

1 + k

∥∥∥∥
L2(B0)

−→ 0

by letting α→ ∞ and N → ∞. This ends the proof of the lemma. □

4. Proof of Theorem 1.1

In what follows, let dH be the Hausdorff distance on a family of non-empty
compact sets K of Rn. Clearly, Dr(w) (for fixed w) is a non-decreasing set
valued function and is an element of K for any r > 0.

Lemma 4.1. For Q-a.s., D·(w) is continuous on (0,∞) with respect to dH .

Proof. First, we prove that (for fixed w) D·(w) is left continuous on (0,∞)
with respect to dH . To do this, it suffices to show that for any ε > 0, there
exists s ∈ (0, r) such that Uε(Ds(w)) ⊃ Dr(w). Set

ℓs(x) := inf
y∈Ds(w)

|x− y|, x ∈ Dr(w).

Then ℓs(·) is a continuous function on Dr(w). Moreover, lims↑r ℓs(x) = 0

for any x ∈ Dr(w). Indeed, by the connectedness of Dr(w), there exists a
continuous path ϕ : [0, 1] → Dr(w) such that ϕ(0) = 0 and ϕ(1) = x for
x ∈ Dr(w). For this ϕ, we can choose s > 0 such that s ∈ (supt∈[0,1] w(ϕ(t)), r)
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and x ∈ Ds(w). Therefore we see that ℓs(x) converges uniformly to 0 on Dr(w)
as s ↑ r and consequently, there exists s ∈ (0, r) such that ℓs(x) < ε (ε > 0)

for all x ∈ Dr(w). Now, we prove the assertion of the lemma. Let J(w) be the

set of discontinuous points of Dr(w). By the left continuity of D·(w), J(w) is
a denumerable set. Therefore

∫
J(w)

dr = 0 and

(18)

∫ ∞

0

Q (r ∈ J(w)) dr = EQ

(∫
J(w)

dr

)
= 0,

where EQ denotes the expectation related to (W, Q). Since for any α > 0 and
r > 0

Dr(wα) = α−λDαr(w),

the λ−1-self-similarity of the environment implies that

Q(r ∈ J(w)) = Q(r ∈ J(wα)) = Q(αr ∈ J(w)) = 0.

Hence we see that Q(r ∈ J(w)) = 0 does not depend on r > 0 and we obtain
the desired result. □

Lemma 4.2. Let f , fα and D be the same as in Lemma 3.2. Let r(α) be a
function such that r(α) → r (r > 0) as α→ ∞. Then∣∣∣Pαw,∗

fα

(
X(eαr(α)) ∈ B

)
−mα(B)

∣∣∣ −→ 0 as α→ ∞

for any open ball B such that B ⊂ D.

Proof. Note that it makes no difference to replace an environment w by w −
infD w as far as the critical depth c, diffusion {X(t),Pαw,∗

x , x ∈ D∗} and the
associated spectral gap γ(α) are considered. So we may assume infD w = 0
without loss of generality. Let {pαw,∗

t }t>0 be the L2(D;mα)-semigroup of
{X(t),Pαw,∗

x , x ∈ D∗} and {Fαw,∗
γ } the associated spectral family of {pαw,∗

t }t>0,

that is, pαw,∗
t =

∫∞
0
e−γtdFαw,∗

γ . Take a large enough α > 0 satisfying

c < r(α). For an open ball B such that B ⊂ D, define the function g on
D by g(x) = IB(x)−mα(B). Then∣∣∣Pαw,∗

fα
(X(eαr(α)) ∈ B)−mα(B)

∣∣∣(19)

=

∫
D

∣∣∣Eαw,∗
x

(
g(X(eαr(α)))

)∣∣∣ fα(x) dx
≤
∫
{f≥N}

f(x) dx+ αλnN

∫
D

∣∣pαw,∗
eαr(α)g(x)

∣∣ dx
≤
∫
{f≥N}

f(x) dx+ αλnNZαe
αr
∥∥pαw,∗

eαr(α)g
∥∥
L2(D;mα)

.
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On the other hand, by Lemma 2.3 and the fact that ∥g∥L1(D;mα) = 0,∥∥pαw,∗
eαr(α)g

∥∥2
L2(D;mα)

=

∫ ∞

γ(α)

exp
(
−2γeαr(α)

)
d
(
Fαw,∗
γ g, g

)
L2(D;mα)

≤ exp(−2γ(α)eαr(α)∥g∥2L2(D;mα)

≤ exp
(
−2eα(r(α)−c−ε)

)
for any ε ∈ (0, r(α)− c). Applying this relation to (19), we obtain the lemma
by letting α→ ∞ and N → ∞. □

Now, we are prepared to prove our main theorem.

Proof of Theorem 1.1. In view of (7) and its related remark mentioned right
after, it holds that {

α−2X (eαr),Pf

} d
=
{
X (eαr(α)),Pα

fα

}
,

where r(α) = r − (2λ/α) logα, Pα
x (dwdω) = Q(dw)Pαw

x (dω) and fα is the
scaled function of f defined in (4). Using this, we shall prove that for any
ε > 0

Pα
fα

(
dH

(
X (eαr(α)), Dr(w)

)
> ε
)
−→ 0 as α→ ∞.

First, take ε′ such that ε′ ∈ (0, r − r(α)) and apply k = eαε
′
to (17). Then by

Lemma 3.1(i), we have

Pαw
fα

(
ταwDr(w) < eαr(α)

)
= Pαw,∗

fα

(
ταwDr(w) < eαr(α)

)
≤ e

∫
Dr(w)

hαw
eαε′e−α(r(α)+ε′)fαdx

≤ e

∫
Dr(w)

hαw
eαε′θ(α)

fαdx −→ 0 as α→ ∞

which implies that for any ε > 0, X (eαr(α)) ⊂ Uε(Dr(w)), Pα
fα
-a.s. as α→ ∞.

Now, it remains to prove that under Pα
fα
,

(20) Dr(w) ⊂ Uε(X (eαr(α))) as α→ ∞.

To this end, let B(x) be an open ball of Dr(w) centered at x with radius

ε′′/2, where x ∈ Dr−ε′′/2(w) and ε′′ ∈ (0, ε). By the same reason in the
proof of Lemma 4.2, we may assume that infDr(w) w = 0. Consider a modified

environment w̃(x) of w(x) on Dr(w) relative to B(x) defined as follows:

w̃(x) = w(x) on B(x)c, w̃(x) ≤ w(x) on B(x)

and

inf
x∈B(x)

w̃(x) = −δ (δ > 0).
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For this w̃, let consider the Dirichlet form (Eαw̃,H1
∗ (Dr(w))), the associated

diffusion {X(t),Pαw̃,∗
x , x ∈ Dr(w)

∗}, the normalized underlying measure m̃α

on Dr(w), the depth d̃ and the critical depth c̃ of Dr(w):

d̃ = d(Dr(w), w̃), c̃ = c(Dr(w), w̃) = sup
x,y∈Dr(w)

cx,y(w̃)

with

cx,y(w̃) = inf
ϕ

sup
t∈[0,1]

w̃(ϕ(t))− w̃(x)− w̃(y)− δ,

in a similar way of Section 2. Then since Dr(w) is also a sub-level domain of
w̃, it is easy to check that m̃α(B(x)) → 1 as α→ ∞ and

(21) c̃ < r + δ.

In particular, we claim that (21) can be regarded as c̃ < r by choosing suffi-

ciently small δ > 0. Indeed, let Ẽ(r0) be a connected component of the level

set {x ∈ Dr(w) : w̃(x) < r0, supB(x)
w < r0 < r} containing B(x). Then,

c̃1 := sup
x∈Dr(w)\Ẽ(r0), y∈Ẽ(r0)

cx,y(w̃) and c̃2 := sup
x,y∈Dr(w)\Ẽ(r0)

cx,y(w̃)

are strictly less than r by the definition of the critical depth. On the other

hand, since Ẽ(r0) is also a sub-level domain of w̃,

c̃3 := sup
x,y∈Ẽ(r0)

cx,y(w̃) = c(Ẽ(r0), w̃) < d(Ẽ(r0), w̃) = r0 + δ

and thus, c̃3 is also strictly less than r by choosing the sufficiently small δ > 0.
Noting c̃ = max{c̃1, c̃2, c̃3} we conclude that the claim is true. Therefore we
see that c̃ < r(α) for sufficiently large α > 0 and

Pαw̃,∗
fα

(
σαw̃
B(x) < eαr(α)

)
≥ Pαw̃,∗

fα

(
X
(
eαr(α)

)
∈ B(x)

)
−→ 1 as α→ ∞

by virtue of Lemma 4.2. Here σαw̃
B denotes the first hitting time of the diffusion

X(t) to B. Since the processes {X(t),Pαw
x } and {X(t),Pαw̃

x } have the same
law on B(x)c,

Pαw
fα

(
σαw
B(x) < eαr(α)

)
= Pαw̃,∗

fα

(
σαw̃
B(x) < eαr(α)

)
−→ 1 as α→ ∞

which implies that B(x) ⊂ Uε(X (eαr(α))), Pαw
fα

-a.s.. Hence we have

Dr−ε′′(w) ⊂ Uε(X (eαr(α))) as α→ ∞

under Pα
fα
. Letting ε′′ → 0, we can derive (20) from Lemma 4.1. □

Remark 4.3. (i) Excepting the one dimensional case, we do not know how to
determine the compact set K(w, r) ⊂ Rn such that under Pf , α

−λX (eαr)
converges in probability to K(w, r) as α → ∞ without the second assumption
of (A.2).
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(ii) It is possible to apply our result to an arbitrary initial distribution (that
is, a point). To deduce this, one may use a priori Gaussian bounds on the
transition probabilities.
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