J. Korean Math. Soc. **48** (2011), No. 1, pp. 147–158 DOI 10.4134/JKMS.2011.48.1.147

SOME LIMIT THEOREMS RELATED TO MULTI-DIMENSIONAL DIFFUSIONS IN A RANDOM ENVIRONMENT

DAEHONG KIM

ABSTRACT. In this paper, we consider a multi-dimensional diffusion process in a self-similar random environment and prove a limit theorem for the shape of the full trajectory of the diffusion by using the localization phenomenon.

1. Introduction

Let \mathcal{W} be the space of continuous functions on \mathbb{R}^n vanishing at the origin and let Q be a probability measure on it. We call an element of \mathcal{W} an environment. For given an environment w, let \mathbb{P}^w_x be the probability measure on Ω , the canonical path space of real-valued continuous functions from $[0, \infty)$ to \mathbb{R}^n , such that $\{X(t), \mathbb{P}^w_x, x \in \mathbb{R}^n\}$ is a diffusion process with generator

(1)
$$\mathcal{L}^{w} = \frac{1}{2} e^{w} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(e^{-w} \frac{\partial}{\partial x_{i}} \right).$$

It is well known that such a process X(t) can be constructed from a Brownian motion by a drift transformation ([2]).

Let \mathcal{P}_x be the probability measure on $\mathcal{W} \times \Omega$ defined by $\mathcal{P}_x(dwd\omega) = Q(dw)\mathbf{P}_x^w(d\omega)$. Then the diffusion X(t) can be regarded as a stochastic process defined on the probability space $(\mathcal{W} \times \Omega, \mathcal{P}_x)$ and it is called as a *diffusion process in a random environment*. This process has a close connection with the model of Sinai's random walk and exhibits some interesting features ([1], [5], [8], [9], [10]). Among those, Brox [1] showed when n = 1 and w(x) is a Brownian environment that there exists a nontrivial measurable function $b_1 : \mathcal{W} \mapsto \mathbf{R}$ such that for any $\varepsilon > 0$,

(2)
$$\mathcal{P}_x\left(\left|\alpha^{-2}X\left(e^{\alpha}\right)-b_1(w)\right|>\varepsilon\right)\longrightarrow 0 \text{ as } \alpha\to\infty$$

O2011 The Korean Mathematical Society

Received May 11, 2009; Revised October 13, 2009.

²⁰¹⁰ Mathematics Subject Classification. Primary 60K37, 31C25, 60J60.

Key words and phrases. Dirichlet forms, random environment, set valued diffusion processes, subdiffusivity.

This research was partially supported by Grant-in-Aid for Scientific Research No. 17740062.

DAEHONG KIM

which is the so-called subdiffusivity. This result was a consequence of a localization phenomenon, the diffusion is trapped in some valleys of its potential w, and was extended to a large class of random environments ([5]). However, all their methods are heavily rely on the one dimensional situation.

The first analogue result of (2) in higher dimensional cases was obtained by Mathieu [8]. The novelty of his work was the introduction of some analytic approaches such as asymptotics of the first non-zero eigenvalue of the generator (1) with a small noise and the related Dirichlet form theory. Motivated by this work, Tanaka [13] also proved that $\{X(t), \mathcal{P}_x, x \in \mathbf{R}^n\}$ is to be recurrent for all dimensions.

We are interested in the long time asymptotics for the shape of the full trajectory of the multi-dimensional diffusion X(t) in a random environment. More precisely, let us consider the random set of trajectory of the diffusion X(t) up to time t:

$$\mathcal{X}(t) := \overline{\{X(s) : 0 \le s \le t\}},$$

where \overline{A} stands for the closure of a set A. We may call the process $\mathcal{X}(t)$ on the probability space $(\mathcal{W} \times \Omega, \mathcal{P}_x, x \in \mathbf{R}^n)$ a set valued diffusion process in a random environment. Our purpose in this article is to extend the result (2) of Brox to the case of set valued diffusion $\mathcal{X}(t)$.

To state our main theorem precisely, let \mathcal{K} be a family of non-empty compact sets of \mathbb{R}^n and $D_r(w)$ the connected component containing the origin of the sub-level domain $\{x \in \mathbb{R}^n : w(x) < r\}$. Let d_H be the Hausdorff distance on \mathcal{K} , that is, for $K_1, K_2 \in \mathcal{K}$

$$d_H(K_1, K_2) = \inf \left\{ \varepsilon > 0 : U_{\varepsilon}(K_1) \supset K_2, \ U_{\varepsilon}(K_2) \supset K_1 \right\},\$$

where $U_{\varepsilon}(K)$ denotes the ε -neighborhood of K. Our result is based on some assumptions for the random characteristics of the environment. The main result of this article is stated as follows:

Theorem 1.1. Let f be a probability density on \mathbb{R}^n with compact support. Suppose that

(A.1) For any $\alpha > 0$ and any fixed $\lambda > 0$, the environment

$$\{w_{\alpha,\lambda}(x) := \alpha^{-1} w(\alpha^{\lambda} x), x \in \mathbf{R}^n\}$$

has the same law as $\{w(x), x \in \mathbf{R}^n\}$ under Q, namely (\mathcal{W}, Q) is a λ^{-1} -self-similar random environment.

(A.2) For Q-a.s. $D_r(w)$ is bounded for any r > 0 and for Q-a.s. $w(x) \ge 0$ for all $x \in \mathbf{R}^n$.

Then for any r > 0, $\varepsilon > 0$ and any fixed $\lambda > 0$,

$$\mathcal{P}_f\left(d_H\left(\alpha^{-\lambda}\mathcal{X}\left(e^{\alpha r}\right),\overline{D_r\left(w_{\alpha,\lambda}\right)}\right) > \varepsilon\right) \longrightarrow 0 \quad as \; \alpha \to \infty.$$

That is, the law of the random set $\alpha^{-\lambda} \mathcal{X}(e^{\alpha r})$ under \mathcal{P}_f converges to the law of the compact set $\overline{D_r(w)}$ under Q as $\alpha \to \infty$.

The natural and typical examples of the random environment satisfying the assumptions (A.1) and (A.2) can be provided by $\mathcal{W} = \{w : w(x) = |B(x)|, x \in \mathbf{R}^n\}$, where B(x) is a Lévy's Brownian motion with a *n*-dimensional time (cf. [8]) and $\mathcal{W} = \{w : w(x) = \sum_{i=1}^n |B(x_i)|, x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n\}$, where $\{B_i(x)\}_{1 \le i \le n}$ is a family of one dimensional Brownian motions which are mutually independent (cf. [12]).

Our theorem tells us that the shape of the \mathcal{K} -valued stochastic process $r^{\lambda} \mathcal{X}(t)$ converges very slowly to that of the connected component containing the origin of $\{x \in \mathbf{R}^n : w(x) < r\}$ by the effect of environment.

To prove our theorem, we address in Section 2 some notations and facts on a one parameter family of diffusion processes and their associated Dirichlet forms (for the general theory of Dirichlet forms, we refer readers to [2]). In Section 3, we obtain some asymptotic results on the first exit times of parameterized diffusions originally due to Mathieu [8] with some modifications (cf. [6], [7]). The proof of the main theorem will be given in Section 4. A key point of the proof is to use a modified environment to show that the parameterized diffusions enter any ball before leaving the domain $D_r(w)$.

2. Preliminaries on parameterized diffusions

For a given $w \in \mathcal{W}$, consider a symmetric closable form on $L^2(\mathbf{R}^n; e^{-\alpha w} dx)$ (energy form) parameterized by $\alpha > 0$:

(3)
$$\mathcal{E}^{\alpha w}(u,v) = \frac{1}{2} \int_{\mathbf{R}^n} \nabla u(x) \cdot \nabla v(x) e^{-\alpha w(x)} dx, \quad u,v \in C_0^1(\mathbf{R}^n),$$

where $C_0^1(\mathbf{R}^n)$ is the space of continuously differentiable functions with compact support in \mathbf{R}^n . Then $(\mathcal{E}^{\alpha w}, H^1(\mathbf{R}^n))$ becomes a regular (local) Dirichlet form defined by the smallest closed extension of (3) (see [2]). Here $H^1(\mathbf{R}^n) = \{u \in L^2(\mathbf{R}^n) : \partial_i u \in L^2(\mathbf{R}^n), 1 \leq i \leq n\}$. By a general theory of Dirichlet forms, there exists a diffusion process associated with $(\mathcal{E}^{\alpha w}, H^1(\mathbf{R}^n))$ and we denote it by $\{X(t), \mathbf{P}_x^{\alpha w}, x \in \mathbf{R}^n\}$. Let f be a probability density function on \mathbf{R}^n and set

$$\mathbf{P}_f(\cdot) := \int_{\mathbf{R}^n} \mathbf{P}_x(\cdot) f(x) dx$$

for a probability distribution \mathbf{P}_x . Then $\{X(t), \mathbf{P}_f^{\alpha w}\}$ can be regarded as the diffusion process with an initial distribution f of the generator (1) replaced w by αw .

For a fixed $\lambda > 0$, we simply write as

(4)
$$w_{\alpha}(x) := \alpha^{-1} w(\alpha^{\lambda} x), \quad f_{\alpha}(x) := \alpha^{\lambda n} f(\alpha^{\lambda} x), \ x \in \mathbf{R}^{n}$$

Let $\{R^w_\beta\}_{\beta>0}$ be the resolvent of $\{X(t), \mathbf{P}^w_f\}$. Then for any $\varphi \in L^2(\mathbf{R}^n; e^{-w} dx)$ and $v \in H^1(\mathbf{R}^n)$,

(5)
$$\mathcal{E}^w_\beta \left(R^w_\beta \varphi, v \right) = \int_{\mathbf{R}^n} \varphi(x) v(x) e^{-w(x)} dx,$$

where $\mathcal{E}^{w}_{\beta}(\phi,\psi) := \mathcal{E}^{w}(\phi,\psi) + \beta \int_{\mathbf{R}^{n}} \phi(x)\psi(x)e^{-w(x)}dx$ for $\phi,\psi \in H^{1}(\mathbf{R}^{n})$. By the change of variable with $x = \alpha^{\lambda}y$, the equation (5) yields that

$$\begin{aligned} \mathcal{E}^{\alpha w_{\alpha}}_{\alpha^{2\lambda}\beta} \left(R^{w}_{\beta} \varphi(\alpha^{\lambda} \cdot), v(\alpha^{\lambda} \cdot) \right) &= \int_{\mathbf{R}^{n}} \alpha^{2\lambda} \varphi(\alpha^{\lambda} y) v(\alpha^{\lambda} y) e^{-\alpha w_{\alpha}(y)} dy \\ &= \mathcal{E}^{\alpha w_{\alpha}}_{\alpha^{2\lambda}\beta} \left(R^{\alpha w_{\alpha}}_{\alpha^{2\lambda}\beta}(\alpha^{2\lambda} \varphi)(\alpha^{\lambda} \cdot), v(\alpha^{\lambda} \cdot) \right). \end{aligned}$$

So the fact that $\{\alpha^{2\lambda}R^{\alpha w_{\alpha}}_{\alpha^{2\lambda}\beta}\}_{\beta>0}$ is the resolvent of $\{\alpha^{\lambda}X(\alpha^{-2\lambda}t), \mathbf{P}^{\alpha w_{\alpha}}_{f_{\alpha}}\}$ implies the following lemma.

Lemma 2.1. For $w \in W$ and $\alpha > 0$,

(6)
$$\left\{\alpha^{-\lambda}X(t), \mathbf{P}_f^w\right\} \stackrel{d}{=} \left\{X(\alpha^{-2\lambda}t), \mathbf{P}_{f_\alpha}^{\alpha w_\alpha}\right\},$$

where $\stackrel{d}{=}$ means the equality in distribution.

For any r > 0, let $r(\alpha) := r - (2\lambda/\alpha) \log \alpha$. Clearly $r(\alpha) \to r$ as $\alpha \to \infty$. Then (6) can be rewritten as

(7)
$$\left\{\alpha^{-\lambda}X(e^{\alpha r}), \mathbf{P}_{f}^{w}\right\} \stackrel{d}{=} \left\{X(e^{\alpha r(\alpha)}), \mathbf{P}_{f_{\alpha}}^{\alpha w_{\alpha}}\right\}$$

by taking $t = e^{\alpha r}$.

Remark 2.2. Under the assumption (A.1), $\mathbf{P}^{\alpha w_{\alpha}}_{\cdot}$ and $\mathbf{P}^{\alpha w}_{\cdot}$ are same for Qa.s.. Therefore we see from (7) that a subdiffusivity problem of the diffusion X(t) is reformulated as an α -asymptotic problem of the parameterized diffusion $\{X(e^{\alpha r(\alpha)}), \mathcal{P}^{\alpha}_{f_{\alpha}}\}$. Here $\mathcal{P}^{\alpha}_{x}(dwd\omega) := Q(dw)\mathbf{P}^{\alpha w}_{x}(d\omega)$.

Let D be an arbitrary bounded domain in \mathbb{R}^n . We introduce the so-called 3-*depths of* D relative to an environment (cf. [4], [8]): the depths of D,

$$l = d(D, w) = \inf_{\partial D} w - \inf_{D} w, \quad d' = d'(D, w) = \sup_{D} w - \inf_{D} w$$

and the critical depth (or elevation) of D,

$$c = c(D, w) = \sup_{x, y \in D} \left\{ \inf_{\phi} \sup_{t \in [0, 1]} w(\phi(t)) - w(x) - w(y) \right\} + \inf_{D} w(y)$$

where ϕ is a continuous path from [0, 1] to D such that $\phi(0) = x, \phi(1) = y$. Note that the quantities d', d and c depend only on the landscape of w and do not depend on any boundary conditions (such as smoothness) of ∂D . Moreover, it is easy to check that if $D \equiv D_r(w)$ (r > 0), then d' = d and d > c.

Let $H^1(D) = \{u \in L^2(D) : \partial_i u \in L^2(D), 1 \le i \le n\}$ and denotes $H^1_0(D)$ by the closure of $C^1_0(D)$ in $H^1(D)$. It is well known that the absorbing process of the diffusion $\{X(t), \mathbf{P}^{\alpha w}_x, x \in \mathbf{R}^n\}$ on D is by definition the diffusion process $\{X(t), \mathbf{P}^{\alpha w, D}_x, x \in D\}$ whose regular Dirichlet form on $L^2(D; e^{-\alpha w} dx)$ is coincided with $(\mathcal{E}^{\alpha w, D}, H^1_0(D))$, where

$$\mathcal{E}^{\alpha w,D}(u,v) = \frac{1}{2} \int_D \nabla u(x) \cdot \nabla v(x) \, e^{-\alpha w(x)} dx$$

([2]). On the other hand, by defining $H^1_*(D) := (H^1_0(D) + \text{constant})$ as a new Sobolev space, $(\mathcal{E}^{\alpha w,D}, H^1_*(D))$ becomes a regular Dirichlet form on $L^2(D^*; e^{-\alpha w} dx)$ as well ([6]). In fact, this form is the smallest one in the family of Dirichlet forms $\mathcal{M} = \{(\mathcal{E}^{\alpha w,D}, \mathcal{F}^D) : H^1_0(D) \subset \mathcal{F}^D \subseteq H^1(D), 1 \in \mathcal{F}^D\}$. Here D^* denotes the one-point compactification of D. Let us denote by $\{X(t), \mathbf{P}_x^{\alpha w,*}, x \in D^*\}$ the diffusion process associated with $(\mathcal{E}^{\alpha w,D}, H^1_*(D))$. This process is irreducible and recurrent on D^* . More general profound properties on this kind of process and its associated Dirichlet form can be found in [3].

For a notational convenience, we set

$$u(\alpha) \succ a \text{ if } \liminf_{\alpha \to \infty} \frac{1}{\alpha} \log u(\alpha) \ge a, \quad u(\alpha) \prec a \text{ if } \limsup_{\alpha \to \infty} \frac{1}{\alpha} \log u(\alpha) \le a.$$

Let $m_{\alpha}(dx)$ be the normalized underlying measure defined by

$$m_{\alpha}(dx) = I_D Z_{\alpha}^{-1} e^{-\alpha w(x)} dx, \quad Z_{\alpha} = \int_D e^{-\alpha w(x)} dx$$

Note that $(1/\alpha) \log Z_{\alpha} \to -\inf_D w$ as $\alpha \to \infty$. Let $\gamma(\alpha)$ be the first non-zero eigenvalue of $(\mathcal{E}^{\alpha w, D}, H^1_*(D))$, the so-called spectral gap, defined by

$$\gamma(\alpha) = \inf_{u \in H^1_*(D)} \frac{\mathcal{E}^{\alpha w, D}(u, u)}{\int_D (u - \int_D u \, dm_\alpha)^2 e^{-\alpha w} dx}$$

The following asymptotic lower bound of $\gamma(\alpha)$ for an arbitrary bounded domain D of \mathbf{R}^n was obtained by [6].

Lemma 2.3. $\gamma(\alpha) \succ -c$.

3. Lemmas on exit times

Let $\tau_D^{\alpha w}$ be the first exit time of the diffusion X(t) out of D, that is, $\tau_D^{\alpha w} := \inf\{t > 0 : X(t) \notin D\}$. For any $\beta > 0$, set $h_{\beta}^{\alpha w}(x) := \mathbf{E}_x^{\alpha w,*}(\exp(-\beta \tau_D^{\alpha w}))$ the Laplace transform of $\tau_D^{\alpha w}$, where $\mathbf{E}_x^{\alpha w,*}$ denotes the expectation relative to $\{X(t), \mathbf{P}_x^{\alpha w,*}, x \in D^*\}$.

In this section, we consider the asymptotics in α of the distribution of $\tau_D^{\alpha w}$ studied in [6], [8] under some modifications. We note that no additional condition is imposed (smoothness as like in [8]) on a domain $D \subset \mathbf{R}^n$, and it makes no difference to replace the diffusion $\{X(t), \mathbf{P}_x^{\alpha w}, x \in \mathbf{R}^n\}$ by $\{X(t), \mathbf{P}_x^{\alpha w,*}, x \in D^*\}$ (or $\{X(t), \mathbf{P}_x^{\alpha w,D}, x \in D\}$) as far as the exit time distribution from D is concerned.

Lemma 3.1. Let $\theta(\alpha)$ be the function such that $\int_D h^{\alpha w}_{\theta(\alpha)} dm_{\alpha} = 1/2$.

- (i) $-d' \prec \theta(\alpha) \prec -d$.
- (i) a vector in the for any k > 0, $\int_D h_{k\theta(\alpha)}^{\alpha w} dm_{\alpha} \to 1/(1+k)$ as $\alpha \to \infty$. In particular, set $D \equiv D_r(w)$ (r > 0). Then for any open ball

(8)
$$\begin{aligned} B \text{ such that } \overline{B} \subset D, \\ \|h_{k\theta(\alpha)}^{\alpha w} - \frac{1}{1+k} \|_{L^{2}(B)} \longrightarrow 0 \\ as \ \alpha \to \infty. \end{aligned}$$

Proof. We may assume that d > 0 (otherwise the present lemma is trivial). Note that it follows from the proof of Theorem 3.1 in [6] that for any $\varepsilon > 0$,

(9)
$$\int_D h_{e^{-\alpha(d-\varepsilon)}}^{\alpha w} dm_{\alpha} \longrightarrow 0 \quad \text{as } \alpha \to \infty.$$

On the other hand, for the absorbing diffusion process $\{X(t), \mathbf{P}_x^{\alpha w, D}, x \in D\}$, put $u_{\alpha}^D(t, x) = \mathbf{P}_x^{\alpha w, D}(t < \tau_D^{\alpha w})$. Then by definition,

$$\mathcal{E}^{\alpha w,D} \left(u^{D}_{\alpha}(t,\cdot), u^{D}_{\alpha}(t,\cdot) \right) = \lim_{s \to 0} \left(\frac{u^{D}_{\alpha}(t,\cdot) - u^{D}_{\alpha}(s+t,\cdot)}{s}, u^{D}_{\alpha}(t,\cdot) \right)_{e^{-\alpha w} dx}$$

$$(10) = -\frac{1}{2} \int_{D} \frac{\partial}{\partial t} \left| u^{D}_{\alpha}(t,x) \right|^{2} e^{-\alpha w(x)} dx$$

$$= -\frac{1}{2} \frac{d}{dt} H^{D}_{\alpha}(t),$$

where $(\cdot, \cdot)_{\mu}$ denotes the inner product on $L^2(D; \mu)$ and

$$H^D_{\alpha}(t) = \int_D \left| u^D_{\alpha}(t,x) \right|^2 e^{-\alpha w(x)} dx.$$

Let denote $(\frac{1}{2}\mathbf{D}, H_0^1(D))$ by the Dirichlet form $(\mathcal{E}^{\alpha w, D}, H_0^1(D))$ when $\alpha = 0$. By the boundedness of D, it is transient (Example 1.5.3 in [2]) and thus for any $u \in H_0^1(D)$, it holds that

$$\int_D u(x)^2 dx \le 2 \|R^D 1\|_{\infty} \mathbf{D}(u, u),$$

where R^D is the Green operator of $(\frac{1}{2}\mathbf{D}, H_0^1(D))$ ([11]). Using this, we have

(11)
$$H^D_{\alpha}(t) \le 2 \|R^D 1\|_{\infty} e^{\alpha d'} \mathcal{E}^{\alpha w, D} \left(u^D_{\alpha}(t, \cdot), u^D_{\alpha}(t, \cdot) \right).$$

By combining (10) and (11),

$$e^{-\alpha d'} \| R^D 1 \|_{\infty}^{-1} \le -\frac{d}{dt} \log H^D_{\alpha}(t)$$

that implies

(12)
$$H^{D}_{\alpha}(t) \le H^{D}_{\alpha}(0) \exp\left(-\|R^{D}1\|_{\infty}^{-1} e^{-\alpha d'} t\right).$$

Take r' > 0 such that $r' \in (d', d' + \varepsilon)$ for any $\varepsilon > 0$. Applying $t = e^{\alpha r'}$ to (12), we see then

$$\begin{split} \mathbf{P}_{m_{\alpha}}^{\alpha w,*} \left(e^{\alpha r'} < \tau_{D}^{\alpha w} \right) &= \mathbf{P}_{m_{\alpha}}^{\alpha w,D} \left(e^{\alpha r'} < \tau_{D}^{\alpha w} \right) \\ &= Z_{\alpha}^{-1} \int_{D} u_{\alpha}^{D} \left(e^{\alpha r'}, x \right) e^{-\alpha w(x)} dx \\ &\leq e^{\alpha (\inf_{D} w + \varepsilon)} H_{\alpha}^{D} \left(e^{\alpha r'} \right)^{1/2} \longrightarrow 0 \quad \text{as } \alpha \to \infty, \end{split}$$

which implies that

(13)
$$\int_D h_{e^{-\alpha(d'+\varepsilon)}}^{\alpha w} dm_{\alpha} \longrightarrow 1 \quad \text{as } \alpha \to \infty.$$

Now, (i) of the lemma is a consequence of (9) and (13).

The first assertion of (ii) was proved in Theorem [6] (also, in Theorem II.1 in [8] related to the reflected Dirichlet form $(\mathcal{E}^{\alpha w,D}, H^1(D))$ under the smoothness of D). Finally, we prove the last assertion of (ii). The idea of the proof is originally due to [8], but we need to improve some technical tools in our settings (D is not smooth). Let B be an open ball such that $\overline{B} \subset D \equiv D_r(w)$ (r > 0)and $r_B := \max_{\overline{B}} w \in (0, d)$. Let B_1 be an open ball such that $B_1 \subset B$ and $r_{B_1} = \max_{\overline{B}_1} w \in (0, d-c)$. Then for any $\varepsilon \in (0, d-c-r_{B_1})$,

(14)

$$\begin{aligned} \left\| h_{k\theta(\alpha)}^{\alpha w} - \int_{D} h_{k\theta(\alpha)}^{\alpha w} dm_{\alpha} \right\|_{L^{2}(B_{1})}^{2} \\ &\leq e^{\alpha r_{B_{1}}} \left\| h_{k\theta(\alpha)}^{\alpha w} - \int_{D} h_{k\theta(\alpha)}^{\alpha w} dm_{\alpha} \right\|_{L^{2}(B_{1};e^{-\alpha w}dx)}^{2} \\ &\leq \gamma(\alpha)^{-1} e^{\alpha r_{B_{1}}} \mathcal{E}_{k\theta(\alpha)}^{\alpha w,D} \left(h_{k\theta(\alpha)}^{\alpha w}, h_{k\theta(\alpha)}^{\alpha w} \right) \\ &\leq \prec -(d-c-r_{B_{1}}-\varepsilon) \end{aligned}$$

by virtue of Lemma 2.3, Lemma 3.1(i) and the fact that for $\beta > 0$

$$\mathcal{E}_{\beta}^{\alpha w, D}(h_{\beta}^{\alpha w}, h_{\beta}^{\alpha w}) = \mathcal{E}_{\beta}^{\alpha w, D}(h_{\beta}^{\alpha w}, 1) = \beta \int_{D} h_{\beta}^{\alpha w} e^{-\alpha w} dx \leq \beta.$$

Therefore we see that (8) holds for the open ball B_1 by combining (14) and the first assertion of (ii). On the other hand, by Poincaré inequality related to $H^1(B)$ for the open ball B, there exists a constant γ_B^{-1} such that for any $\varepsilon \in (0, d - r_B)$,

(15)
$$\begin{aligned} \left\|h_{k\theta(\alpha)}^{\alpha w} - \left\langle h_{k\theta(\alpha)}^{\alpha w} \right\rangle_{B}\right\|_{L^{2}(B)}^{2} &\leq \gamma_{B}^{-1} \int_{B} \left|\nabla h_{k\theta(\alpha)}^{\alpha w}\right|^{2} dx \\ &\leq 2\gamma_{B}^{-1} e^{\alpha r_{B}} \mathcal{E}_{k\theta(\alpha)}^{\alpha w,D} \left(h_{k\theta(\alpha)}^{\alpha w}, h_{k\theta(\alpha)}^{\alpha w}\right) \\ &\prec -(d - r_{B} - \varepsilon), \end{aligned}$$

where $\langle h \rangle_B := \int_B h \, dx / \int_B dx$. Hence, for the open balls B_1 and B,

$$\left\|h_{k\theta(\alpha)}^{\alpha w} - \frac{1}{1+k}\right\|_{L^{2}(B_{1})} \longrightarrow 0, \quad \left\|h_{k\theta(\alpha)}^{\alpha w} - \left\langle h_{k\theta(\alpha)}^{\alpha w}\right\rangle_{B}\right\|_{L^{2}(B_{1})} \longrightarrow 0$$

as $\alpha \to \infty$ and thus

(16)
$$\left\langle h_{k\theta(\alpha)}^{\alpha w} \right\rangle_B \longrightarrow \frac{1}{1+k} \quad \text{as } \alpha \to \infty.$$

Now, applying (16) to (15), we conclude that (8) also holds for any open ball B such that $\overline{B} \subset D$.

Lemma 3.2. Let f be a probability density function on $D \equiv D_r(w)$ (r > 0)and let f_{α} be the scaled function of f defined in (4). Then for any k > 0,

(17)
$$\int_D h_{k\theta(\alpha)}^{\alpha w} df_\alpha \longrightarrow \frac{1}{1+k} \quad as \ \alpha \to \infty.$$

Proof. Let B_0 be an open ball centered at 0 satisfying $\overline{B}_0 \subset D$. In view of the proof of the last assertion of Lemma 3.1(ii), we see that (8) holds for B_0 and its speed of decay is exponential. Note that the support of f_{α} is contained in B_0 for large enough α . So by the similar argument in the proof of Theorem II.3 in [8], we have

$$\left\| h_{k\theta(\alpha)}^{\alpha w} - \frac{1}{1+k} \right\|_{L^2(D; f_\alpha dx)}$$

$$\leq 4 \int_{\{f \geq N\}} f(x) \, dx + \alpha^{\lambda n} N \left\| h_{k\theta(\alpha)}^{\alpha w} - \frac{1}{1+k} \right\|_{L^2(B_0)} \longrightarrow 0$$

by letting $\alpha \to \infty$ and $N \to \infty$. This ends the proof of the lemma.

4. Proof of Theorem 1.1

In what follows, let d_H be the Hausdorff distance on a family of non-empty compact sets \mathcal{K} of \mathbb{R}^n . Clearly, $\overline{D_r(w)}$ (for fixed w) is a non-decreasing set valued function and is an element of \mathcal{K} for any r > 0.

Lemma 4.1. For Q-a.s., $\overline{D_{\cdot}(w)}$ is continuous on $(0,\infty)$ with respect to d_H .

Proof. First, we prove that (for fixed w) $D_{\cdot}(w)$ is left continuous on $(0, \infty)$ with respect to d_H . To do this, it suffices to show that for any $\varepsilon > 0$, there exists $s \in (0, r)$ such that $U_{\varepsilon}(\overline{D_s(w)}) \supset \overline{D_r(w)}$. Set

$$\ell_s(x) := \inf_{y \in \overline{D_s(w)}} |x - y|, \quad x \in \overline{D_r(w)}.$$

Then $\ell_s(\cdot)$ is a continuous function on $\overline{D_r(w)}$. Moreover, $\lim_{s\uparrow r} \ell_s(x) = 0$ for any $x \in \overline{D_r(w)}$. Indeed, by the connectedness of $D_r(w)$, there exists a continuous path ϕ : $[0,1] \to D_r(w)$ such that $\phi(0) = 0$ and $\phi(1) = x$ for $x \in D_r(w)$. For this ϕ , we can choose s > 0 such that $s \in (\sup_{t \in [0,1]} w(\phi(t)), r)$

and $x \in D_s(w)$. Therefore we see that $\ell_s(x)$ converges uniformly to 0 on $D_r(w)$ as $s \uparrow r$ and consequently, there exists $s \in (0, r)$ such that $\ell_s(x) < \varepsilon$ ($\varepsilon > 0$) for all $x \in \overline{D_r(w)}$. Now, we prove the assertion of the lemma. Let J(w) be the set of discontinuous points of $\overline{D_r(w)}$. By the left continuity of $\overline{D_r(w)}$, J(w) is a denumerable set. Therefore $\int_{J(w)} dr = 0$ and

(18)
$$\int_0^\infty Q\left(r \in J(w)\right) dr = \mathbf{E}^Q\left(\int_{J(w)} dr\right) = 0,$$

where \mathbf{E}^Q denotes the expectation related to $(\mathcal{W},Q).$ Since for any $\alpha>0$ and r>0

$$D_r(w_\alpha) = \alpha^{-\lambda} D_{\alpha r}(w),$$

the λ^{-1} -self-similarity of the environment implies that

$$Q(r \in J(w)) = Q(r \in J(w_{\alpha})) = Q(\alpha r \in J(w)) = 0.$$

Hence we see that $Q(r \in J(w)) = 0$ does not depend on r > 0 and we obtain the desired result.

Lemma 4.2. Let f, f_{α} and D be the same as in Lemma 3.2. Let $r(\alpha)$ be a function such that $r(\alpha) \rightarrow r$ (r > 0) as $\alpha \rightarrow \infty$. Then

$$\left|\mathbf{P}_{f_{\alpha}}^{\alpha w,*}\left(X(e^{\alpha r(\alpha)})\in B\right)-m_{\alpha}(B)\right|\longrightarrow 0 \quad as \ \alpha\to\infty$$

for any open ball B such that $\overline{B} \subset D$.

Proof. Note that it makes no difference to replace an environment w by $w - \inf_D w$ as far as the critical depth c, diffusion $\{X(t), \mathbf{P}_x^{\alpha w, *}, x \in D^*\}$ and the associated spectral gap $\gamma(\alpha)$ are considered. So we may assume $\inf_D w = 0$ without loss of generality. Let $\{p_t^{\alpha w, *}\}_{t>0}$ be the $L^2(D; m_\alpha)$ -semigroup of $\{X(t), \mathbf{P}_x^{\alpha w, *}, x \in D^*\}$ and $\{F_\gamma^{\alpha w, *}\}$ the associated spectral family of $\{p_t^{\alpha w, *}\}_{t>0}$, that is, $p_t^{\alpha w, *} = \int_0^\infty e^{-\gamma t} dF_\gamma^{\alpha w, *}$. Take a large enough $\alpha > 0$ satisfying $c < r(\alpha)$. For an open ball B such that $\overline{B} \subset D$, define the function g on D by $g(x) = I_B(x) - m_\alpha(B)$. Then

(19)
$$\begin{aligned} \left| \mathbf{P}_{f_{\alpha}}^{\alpha w,*}(X(e^{\alpha r(\alpha)}) \in B) - m_{\alpha}(B) \right| \\ &= \int_{D} \left| \mathbf{E}_{x}^{\alpha w,*} \left(g(X(e^{\alpha r(\alpha)})) \right) \right| f_{\alpha}(x) \, dx \\ &\leq \int_{\{f \geq N\}} f(x) \, dx + \alpha^{\lambda n} N \int_{D} \left| p_{e^{\alpha r(\alpha)}}^{\alpha w,*} g(x) \right| \, dx \\ &\leq \int_{\{f \geq N\}} f(x) \, dx + \alpha^{\lambda n} N Z_{\alpha} e^{\alpha r} \left\| p_{e^{\alpha r(\alpha)}}^{\alpha w,*} g \right\|_{L^{2}(D;m_{\alpha})} \end{aligned}$$

DAEHONG KIM

On the other hand, by Lemma 2.3 and the fact that $||g||_{L^1(D;m_\alpha)} = 0$,

$$\begin{aligned} \left\| p_{e^{\alpha r(\alpha)}}^{\alpha w,*} g \right\|_{L^{2}(D;m_{\alpha})}^{2} &= \int_{\gamma(\alpha)}^{\infty} \exp\left(-2\gamma e^{\alpha r(\alpha)}\right) d\left(F_{\gamma}^{\alpha w,*} g,g\right)_{L^{2}(D;m_{\alpha})} \\ &\leq \exp\left(-2\gamma(\alpha) e^{\alpha r(\alpha)} \|g\|_{L^{2}(D;m_{\alpha})}^{2} \\ &\leq \exp\left(-2e^{\alpha(r(\alpha)-c-\varepsilon)}\right) \end{aligned}$$

for any $\varepsilon \in (0, r(\alpha) - c)$. Applying this relation to (19), we obtain the lemma by letting $\alpha \to \infty$ and $N \to \infty$.

Now, we are prepared to prove our main theorem.

Proof of Theorem 1.1. In view of (7) and its related remark mentioned right after, it holds that

$$\left\{\alpha^{-2}\mathcal{X}(e^{\alpha r}),\mathcal{P}_{f}\right\}\stackrel{d}{=}\left\{\mathcal{X}(e^{\alpha r(\alpha)}),\mathcal{P}_{f_{\alpha}}^{\alpha}\right\},$$

where $r(\alpha) = r - (2\lambda/\alpha) \log \alpha$, $\mathcal{P}_x^{\alpha}(dwd\omega) = Q(dw) \mathbf{P}_x^{\alpha w}(d\omega)$ and f_{α} is the scaled function of f defined in (4). Using this, we shall prove that for any $\varepsilon > 0$

$$\mathcal{P}_{f_{\alpha}}^{\alpha}\left(d_{H}\left(\mathcal{X}(e^{\alpha r(\alpha)}), \overline{D_{r}(w)}\right) > \varepsilon\right) \longrightarrow 0 \quad \text{as } \alpha \to \infty.$$

First, take ε' such that $\varepsilon' \in (0, r - r(\alpha))$ and apply $k = e^{\alpha \varepsilon'}$ to (17). Then by Lemma 3.1(i), we have

$$\begin{aligned} \mathbf{P}_{f_{\alpha}}^{\alpha w} \left(\tau_{D_{r}(w)}^{\alpha w} < e^{\alpha r(\alpha)} \right) &= \mathbf{P}_{f_{\alpha}}^{\alpha w, *} \left(\tau_{D_{r}(w)}^{\alpha w} < e^{\alpha r(\alpha)} \right) \\ &\leq e \int_{D_{r}(w)} h_{e^{\alpha \varepsilon'} e^{-\alpha (r(\alpha) + \varepsilon')}}^{\alpha w} f_{\alpha} dx \\ &\leq e \int_{D_{r}(w)} h_{e^{\alpha \varepsilon'} \theta(\alpha)}^{\alpha w} f_{\alpha} dx \longrightarrow 0 \quad \text{as } \alpha \to \infty \end{aligned}$$

which implies that for any $\varepsilon > 0$, $\mathcal{X}(e^{\alpha r(\alpha)}) \subset U_{\varepsilon}(\overline{D_r(w)})$, $\mathcal{P}_{f_{\alpha}}^{\alpha}$ -a.s. as $\alpha \to \infty$. Now, it remains to prove that under $\mathcal{P}_{f_{\alpha}}^{\alpha}$,

(20)
$$\overline{D_r(w)} \subset U_{\varepsilon}(\mathcal{X}(e^{\alpha r(\alpha)})) \text{ as } \alpha \to \infty.$$

To this end, let B(x) be an open ball of $D_r(w)$ centered at x with radius $\varepsilon''/2$, where $x \in \overline{D_{r-\varepsilon''/2}(w)}$ and $\varepsilon'' \in (0,\varepsilon)$. By the same reason in the proof of Lemma 4.2, we may assume that $\inf_{D_r(w)} w = 0$. Consider a modified environment $\widetilde{w}(x)$ of w(x) on $\overline{D_r(w)}$ relative to B(x) defined as follows:

$$\widetilde{w}(x) = w(x)$$
 on $B(x)^c$, $\widetilde{w}(x) \le w(x)$ on $\overline{B(x)}$

and

$$\inf_{x\in\overline{B(x)}}\widetilde{w}(x) = -\delta \ (\delta > 0)$$

For this \widetilde{w} , let consider the Dirichlet form $(\mathcal{E}^{\alpha \widetilde{w}}, H^1_*(D_r(w)))$, the associated diffusion $\{X(t), \mathbf{P}_x^{\alpha \widetilde{w},*}, x \in D_r(w)^*\}$, the normalized underlying measure \widetilde{m}_{α} on $D_r(w)$, the depth \widetilde{d} and the critical depth \widetilde{c} of $D_r(w)$:

$$\widetilde{d} = d(D_r(w), \widetilde{w}), \qquad \widetilde{c} = c(D_r(w), \widetilde{w}) = \sup_{x,y \in D_r(w)} c_{x,y}(\widetilde{w})$$

with

$$c_{x,y}(\widetilde{w}) = \inf_{\phi} \sup_{t \in [0,1]} \widetilde{w}(\phi(t)) - \widetilde{w}(x) - \widetilde{w}(y) - \delta,$$

in a similar way of Section 2. Then since $D_r(w)$ is also a sub-level domain of \tilde{w} , it is easy to check that $\tilde{m}_{\alpha}(B(x)) \to 1$ as $\alpha \to \infty$ and

(21)
$$\widetilde{c} < r + \delta.$$

In particular, we claim that (21) can be regarded as $\tilde{c} < r$ by choosing sufficiently small $\delta > 0$. Indeed, let $\tilde{E}(r_0)$ be a connected component of the level set $\{x \in D_r(w) : \tilde{w}(x) < r_0, \sup_{\overline{B(x)}} w < r_0 < r\}$ containing $\overline{B(x)}$. Then,

$$\widetilde{c}_1 := \sup_{x \in D_r(w) \setminus \widetilde{E}(r_0), \ y \in \widetilde{E}(r_0)} c_{x,y}(\widetilde{w}) \quad \text{and} \quad \widetilde{c}_2 := \sup_{x,y \in D_r(w) \setminus \widetilde{E}(r_0)} c_{x,y}(\widetilde{w})$$

are strictly less than r by the definition of the critical depth. On the other hand, since $\widetilde{E}(r_0)$ is also a sub-level domain of \widetilde{w} ,

$$\widetilde{c}_3 := \sup_{x,y \in \widetilde{E}(r_0)} c_{x,y}(\widetilde{w}) = c(\widetilde{E}(r_0), \widetilde{w}) < d(\widetilde{E}(r_0), \widetilde{w}) = r_0 + \delta$$

and thus, \tilde{c}_3 is also strictly less than r by choosing the sufficiently small $\delta > 0$. Noting $\tilde{c} = \max{\tilde{c}_1, \tilde{c}_2, \tilde{c}_3}$ we conclude that the claim is true. Therefore we see that $\tilde{c} < r(\alpha)$ for sufficiently large $\alpha > 0$ and

$$\mathbf{P}_{f_{\alpha}}^{\alpha \widetilde{w},*} \left(\sigma_{B(x)}^{\alpha \widetilde{w}} < e^{\alpha r(\alpha)} \right) \ge \mathbf{P}_{f_{\alpha}}^{\alpha \widetilde{w},*} \left(X \left(e^{\alpha r(\alpha)} \right) \in B(x) \right) \longrightarrow 1 \quad \text{as } \alpha \to \infty$$

by virtue of Lemma 4.2. Here $\sigma_B^{\alpha \widetilde{w}}$ denotes the first hitting time of the diffusion X(t) to B. Since the processes $\{X(t), \mathbf{P}_x^{\alpha w}\}$ and $\{X(t), \mathbf{P}_x^{\alpha \widetilde{w}}\}$ have the same law on $B(x)^c$,

$$\mathbf{P}_{f_{\alpha}}^{\alpha w} \left(\sigma_{B(x)}^{\alpha w} < e^{\alpha r(\alpha)} \right) = \mathbf{P}_{f_{\alpha}}^{\alpha \widetilde{w}, *} \left(\sigma_{B(x)}^{\alpha \widetilde{w}} < e^{\alpha r(\alpha)} \right) \longrightarrow 1 \quad \text{as } \alpha \to \infty$$

which implies that $B(x) \subset U_{\varepsilon}(\mathcal{X}(e^{\alpha r(\alpha)})), \mathbf{P}_{f_{\alpha}}^{\alpha w}$ -a.s.. Hence we have

$$\overline{D_{r-\varepsilon''}(w)} \subset U_{\varepsilon}(\mathcal{X}(e^{\alpha r(\alpha)})) \quad \text{as } \alpha \to \infty$$

under $\mathcal{P}^{\alpha}_{f_{\alpha}}$. Letting $\varepsilon'' \to 0$, we can derive (20) from Lemma 4.1.

Remark 4.3. (i) Excepting the one dimensional case, we do not know how to determine the compact set $K(w,r) \subset \mathbf{R}^n$ such that under \mathcal{P}_f , $\alpha^{-\lambda} \mathcal{X}(e^{\alpha r})$ converges in probability to K(w,r) as $\alpha \to \infty$ without the second assumption of (A.2).

DAEHONG KIM

(ii) It is possible to apply our result to an arbitrary initial distribution (that is, a point). To deduce this, one may use a priori Gaussian bounds on the transition probabilities.

Acknowledgement. A part of this paper is base on my talk in "International Workshop on Probability Theory and its Applications" held at Seoul National University, Korea. I am grateful to Professor Panki Kim for his kind invitation.

References

- T. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab. 14 (1986), no. 4, 1206–1218.
- [2] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994.
- [3] M. Fukushima and H. Tanaka, Poisson point processes attached to symmetric diffusions, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 3, 419–459.
- [4] R. A. Holley, S. Kusuoka, and D. W. Stroock, Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal. 83 (1989), no. 2, 333–347.
- [5] K. Kawazu, Y. Tamura, and H. Tanaka, *Limit theorems for one-dimensional diffusions and random walks in random environments*, Probab. Theory Related Fields 80 (1989), no. 4, 501–541.
- [6] D. Kim, On spectral gaps and exit time distributions for a non-smooth domain, Forum Math. 18 (2006), no. 4, 571–583.
- [7] D. Kim and Y. Oshima, Some inequalities related to transience and recurrence of Markov processes and their applications, J. Theor. Probab. 23 (2010), no. 1, 148–168.
- [8] P. Mathieu, Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium, Probab. Theory Related Fields 99 (1994), no. 4, 549–580.
- [9] _____, Limit theorems for diffusions with a random potential, Stochastic Process. Appl. 60 (1995), no. 1, 103–111.
- [10] Y. G. Sinai, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247–258.
- [11] P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109–138.
- [12] H. Takahashi, Recurrence and transience of multi-dimensional diffusion processes in reflected Brownian environments, Statist. Probab. Lett. 69 (2004), no. 2, 171–174.
- [13] H. Tanaka, Recurrence of a diffusion process in a multidimensional Brownian environment, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 377–381.

DEPARTMENT OF MATHEMATICS AND ENGINEERING FACULTY OF ENGINEERING KUMAMOTO UNIVERSITY KUMAMOTO 860-8555, JAPAN *E-mail address:* daehong@gpo.kumamoto-u.ac.jp