• 제목/요약/키워드: SimPowerSystems

Search Result 273, Processing Time 0.034 seconds

Electric Output Characteristics According to Irradiation for Photovoltaic Systems (태양광 발전시스템의 일사량에 따른 출력 특성)

  • Cho, Jae-Chul;Choi, Yong-Sung;Kim, Hyang-Kon;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.189-191
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a irradiation range of $100{\sim}900[W/m^2]$, output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

  • PDF

A Study of on a Power Control System for a Solar-Electric Vehicle (태양광-전기자동차의 동력제어시스템에 관한 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.70-76
    • /
    • 2014
  • The intensity of sunlight becomes lower when weather conditions change, which affects whether a solar-electric vehicle can be driven on a shady road. The power delivered by solar cells can be vary depending on the amount of shade. As a result, the battery system is often used to compensate for variations in the power delivered by solar cells. Therefore, studies of power control systems for solar-electric vehicles are required. In this paper, mathematical models for such a power control system are studied and important variables are considered. Simulation and test results show that the mathematical model and actual designs developed here would be effective when used with solar-electric vehicles.

Analysis of the Power Supply System of a Maglev Train (자기부상열차의 급전시스템 검토)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.209-218
    • /
    • 2006
  • This paper presents the comparison and analysis of the power supply system of a Maglev train and conventional electric railway. Even though all Maglev trains have batteries on their vehicles, electric power supply from the ground side is necessary for levitation, propulsion, on-board electrical equipment, battery recharging, and so on. At low speeds up to $100{\sim}150(km/h)$, the Maglev train, generally, uses a mechanical contact, a current collector as same as conventional electric railway. However, at high speeds, the Maglev train can no longer obtain power from the ground side by using a mechanical contact. Therefore, high speed Maglev trains use their own way to deliver the power to the vehicle from the ground. In this paper, the power supply systems of the german, japanese, and korean low- and high-speed Maglev trains have been reviewed.

  • PDF

Low-Power DCT Architecture by Minimizing Switching Activity (스위칭 엑티비티를 최소화한 저전력 DCT 아키텍쳐 구현)

  • Kim, San;Park, Jong-Su;Lee, Yong-Surk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.863-866
    • /
    • 2005
  • Low-power design is one of the most important challenges encountered in maximizing battery life in portable devices as well as saving energy during system operation. In this paper we propose a low-power DCT (Discrete Cosine Transform) architecture using a modified Computation Sharing Multiplication (CSHM). The overall rate of power consume is reduced during DCT: the proposed architecture does not perform arithmetic operations on unnecessary bits during the Computation Sharing Multiplication calculations. Experimental results show that it is possible to reduce power dissipation up to about $7{\sim}8%$ without compromising the final DCT results. The proposed lowpower DCT architecture can be applied to consumer electronics as well as portable multimedia systems requiring high throughput and low-power.

  • PDF

Isolation Control High Speed Transfer Switch for Upgrade Reliability of Uninterruptible Power Supply (USP의 신뢰성 향상을 위한 독립제어 고속절환장치)

  • Jung, Hyun-Chul;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.278-286
    • /
    • 2008
  • This paper investigates the fault generation type and the cause of output interruptionsin bulky with $30^{\sim}500[KVA]$ double conversion UPS, and proposes the fault detection method to improve the reliability of power supply used in the critical load in industry. Identifies its existing way of detecting a quality of inverter output it to bypass when exceeds its expectation. Under a UPS managing system, when an inner (Power device, Controller, CPU) fault occurs it disrupts the power supply and these occurrences has been verified by the results of experiments and application results. To overcome these problems, the proposed method constructs independently a fault-detection, a bypass-control device and a triple power supply apart from the conventional UPS operation. Also the detection point is changed to the preceding of a circuit breaker, a reference of fault detection is modified to avoid any clash and the breaking equipment is attached to intercept a spread of accident. As a result of applications of these developed systems to 242 UPS which was installed purposefully to the communication power supply, the service errors has not occurred in the UPS for two years since 2006.

Hessenberg Method for Small Signal Stability Analysis of Large Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg법)

  • Nam, Hae-Gon;Song, Seong-Geun;Sim, Gwan-Sik;Mun, Chae-Ju;Kim, Dong-Jun;Mun, Yeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.168-176
    • /
    • 2000
  • This paper presents the Hessenberg method, a new sparsity-based small signal stability analysis program for large interconnected power systems. The Hessenberg method as well as the Arnoldi method computes the partial eigen-solution of large systems. However, the Hessenberg method with pivoting is numerically very stable comparable to the Householder method and thus re-orthogonalization of the krylov vectors is not required. The fractional transformation with a complex shift is used to compute the modes around the shift point. If only the dominant electromechanical oscillation modes are of concern, the modes can be computed fast with the shift point determined by Fourier transforming the time simulation results for transient stability analysis, if available. The program has been successfully tested on the New England 10-machine 39-bus system and Korea Electric Power Co. (KEPCO) system in the year of 2000, which is comprised of 791-bus, 1575-branch, and 215-machines. The method is so efficient that CPU time for computing five eigenvalues of the KEPCO system is 3.4 sec by a PC with 400 MHz Pentium IIprocessor.

  • PDF

Hybrid Superconducting Fault Current Limiters for Distribution Electric Networks (하이브리드 방식을 적용한 배전급 초전도 한류기 개발)

  • Lee, B.W.;Park, K.B.;Sim, J.;Oh, I.S.;Lim, S.W.;Kim, H.R.;Hyun, O.B.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.102-103
    • /
    • 2007
  • In order to apply resistive superconducting fault current limiters into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. Thus, in order to make practical SFCL, we designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for practical applications are in the process.

  • PDF

I-V Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 전압-전류 특성)

  • Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.183-185
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As I-Y characteristics according to a temperature range of 10$\sim$50[], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature.

  • PDF

Real-time Analysis of Large Scale Power Systems Using KEPS (대규모 전력계통의 실시간 해석 및 응용)

  • Shin, Jeong-Hoon;Kim, Tae-Kyun;Yoon, Yong-Beum;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.101-105
    • /
    • 2001
  • 본 논문에서는 한전 전력연구원에서 개발한 전력계통 해석용 시뮬레이터(이하 KEPS)를 이용하여 대규모 전력계통을 실시간으로 해석하는 방법 및 그 결과를 제시하고자 한다. KEPS는 캐나다 RTI사에서 개발한 RTDS(Real-Time Digital Simulator)를 근간으로 하는 대규모 디지털 실시간 시뮬레이터로써 총 26랙으로 구성되어 있으며 대규모 전력계통을 $50{\mu}sec{\sim}70{\mu}sec$의 타임스텝으로 계산할 수 있는 전력계통 전자기 과도현상 모의해석 장치이다. 본 논문에서는 KEPS를 이용하여 한전의 2000년 계통을 실시간으로 해석하고, 전력계통 안정화장치 (PSS), 계전기등 외부기기를 실시간으로 해석, 검증한 결과를 소개하기로 한다.

  • PDF

OpenLDI Receiver Circuit for Flat-Panel Display Systems (평판 디스플레이 시스템을 위한 OpenLDI 수신기 회로)

  • Han, Pyung-Su;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.34-43
    • /
    • 2008
  • An OpenLDI receiver circuit for flat-panel display systems was designed and fabricated using $1.8-{\mu}m$ high-voltage CMOS technology. Designed circuit roughly consists of DLL circuit and parallelizers, which recovers clock and parallelize data bits, respectably. It has one clock input and four data inputs. Measurement results showed that it successfully recovers clock signal from input whose frequency is $10Mhz{\sim}65Mhz$, which corresponds data rate of $70Mbps{\sim}455Mbps$ per channel, or $280Mbps{\sim}1.82Gbps$ when all of the four data channels were utilized. A commercial LCD monitor was modified into a test-bench and used for video data transmission at clock frequency of 49Mhz. In the experiment, power consumption was 19mW for core block and 82.5mW for output buffer.