• Title/Summary/Keyword: Silver nanoparticles(AgNPs)

Search Result 93, Processing Time 0.027 seconds

The Importance of Essential-Oils in the Green Synthesis of Silver Nanoparticles

  • Barzinjy, Azeez Abdullah
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.284-297
    • /
    • 2022
  • The antibacterial activity of metallic nanoparticles (NPs), especially silver (Ag), has been investigated during the course of time in various chemical reactions for antibiotics free agents. Green synthesis of metallic NPs using either microorganisms or plant-extracts has appeared as a simple and replacement to chemical and physical methods. The synthesizing of these NPs through ecofriendly methods signifies an exceedingly applicable approach for offering economical, preferring scalability and possessing negligible ecological influences. Essential-oils are among the subordinate metabolites of plants and their antibacterial anti-inflammatory characteristics have been investigated widely and are commonly attained from the aromatic plants. The usage of essential-oils as reducing agents in biosynthesizing of Ag NPs bring together the interaction of a vital antibacterial agent that simplify the nucleation and growth process within the NPs formation. This review article is offering a progressive process of Ag NPs synthesis using essential oils along with proposing the most applicable formation mechanisms and their antibacterial activities.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai

  • Choi, Seona;Kim, Soyoun;Bae, Yeon-Jae;Park, June-Woo;Jung, Jinho
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.3.1-3.6
    • /
    • 2015
  • Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles

  • Hamzah, Haider M.;Salah, Reyam F.;Maroof, Mohammed N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1654-1663
    • /
    • 2018
  • Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.

Effects of Citrate-capped Silver Nanoparticles on the Blood Coagulation and Platelet Aggregation in Rats (랫드의 혈액응고 및 혈소판 응집에 미치는 은나노 입자의 영향)

  • Lee, Yeonjin;Park, Kwangsik
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.382-389
    • /
    • 2012
  • Effects of citrate-capped silver nanoparticles (AgNPs) on the blood coagulation and platelet aggregation were investigated using whole blood, platelet rich plasma (PRP) and washed platelet obtained from SD male rats. To confirm the stability of AgNPs in the test, size distribution of the nanoparticles was measured in the vehicles including distilled water, serum, and platelet buffers. The average size of AgNPs was 20 nm in the vehicles, which means that the stability was maintained during the whole experimental period. When blood coagulation was monitored by using whole blood impedance aggregometer, coagulation was not observed at the concentration of 1, 10 and 50 ppm. Platelets in plasma or in buffer were not aggregated by AgNPs at the concentration of 1, 2 and 4 ppm, respectively. The test concentration of AgNPs could not be increased because the dark color of the nanoparticles impeded the transmission of light, which is an indicator of aggregation. Although the blood or platelets were pre-activated by collagen, thrombin, or ADP with sub-threshold level, aggregation was not observed at the test concentration. Microscopic observation also supported the result obtained by the aggregometer.

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina

  • Ruiz-Romero, Paola;Valdez-Salas, Benjamin;Gonzalez-Mendoza, Daniel;Mendez-Trujillo, Vianey
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV-visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV-visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism ($p{\leq}.05$) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.

Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract

  • Nagajyothi, P.C.;Lee, Seong-Eon;An, Minh;Lee, Kap-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2609-2612
    • /
    • 2012
  • A simple green method was developed for rapid synthesis of silver and gold nanoparticles (AgNPs and AuNPs) has been reported using Lonicera japonica flower extract as a reducing and a capping agent. AgNPs and AuNPs were carried out at $70^{\circ}C$. The successful formation of AgNPs and AuNPs have been confirmed by UV-Vis spectro photometer, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray Analysis (EDAX), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To our knowledge, this is the first report where Lonicera japonica flower was found to be a suitable plant source for the green synthesis of AgNPs and AuNPs.

Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment (수환경 특성에 따른 은과 이산화티탄 나노입자의 응집 특성 연구)

  • Lim, Myunghee;Bae, Sujin;Lee, Yong-Ju;Lee, Sung-Kyu;Hwang, Yu Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.571-579
    • /
    • 2013
  • The aggregation behaviors of silver nanoparticles (AgNPs) and titanium dioxide ($TiO_2$) nanoparticles were investigated. Time-resolved dynamic light scattering (DLS) was used to study the initial aggregation of AgNPs and $TiO_2$ over a range of mono (NaCl) and divalent ($CaCl_2$) electrolyte concentrations. The effects of pH, initial concentration of NPs and natural organic matters (NOM) on the aggregation of NPs were also investigated. The aggregation of both nanoparticles showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior. Divalent electrolyte was more efficient in destabilize the AgNPs and $TiO_2$ than monovalent electrolyte. The effect of pH on the aggregation of AgNPs was not significant. But the aggregation rate of $TiO_2$ was much higher with increasing pH. Higher NPs concentration leads to faster aggregation. Natural organic matter (NOM) was found to substantially hinder the aggregation of both AgNPs and $TiO_2$. This study found that the aggregation behavior of AgNPs and $TiO_2$ are closely associated with environmental factors such as ionic strength, pH, initial concentration of NPs and NOM.

Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications

  • Sheikh, Faheem A.;Barakat, Nasser A.M.;Kanjwal, Muzafar A.;Chaudhari, Atul A.;Jung, In-Hee;Lee, John-Hwa;Kim, Hak-Yong
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.688-696
    • /
    • 2009
  • In this study, a new class of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles (NPs) was synthesized by electrospinning. A simple method that did not depending on additional foreign chemicals was used to self synthesize the silver NPs in/on PU nanofibers. The synthesis of silver NPs was carried out by exploiting the reduction ability of N,N-dimethylformamide (DMF), which is used mainly to decompose silver nitrate to silver NPs. Typically, a sol-gel consisting of $AgNO_3$/PU was electrospun and aged for one week. Silver NPs were created in/on PU nanofibers. SEM confirmed the well oriented nanofibers and good dispersion of pure silver NPs. TEM indicated that the Ag NPs were 5 to 20 nm in diameter. XRD demonstrated the good crystalline features of silver metal. The mechanical properties of the nanofiber mats showed improvement with increasing silver NPs content. The fixedness of the silver NPs obtained on PU nanofibers was examined by harsh successive washing of the as-prepared mats using a large amount of water. The results confirmed the good stability of the synthesized nanofiber mats. Two model organisms, E. coli and S. typhimurium, were used to check the antimicrobial influence of these nanofiber mats. Subsequently, antimicrobial tests indicated that the prepared nanofibers have a high bactericidal effect. Accordingly, these results highlight the potential use of these nanofiber mats as antimicrobial agents.

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.