Browse > Article
http://dx.doi.org/10.1080/12298093.2018.1454011

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina  

Ruiz-Romero, Paola (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC))
Valdez-Salas, Benjamin (Instituto de Ingenieria de la Universidad Autonoma de Baja California)
Gonzalez-Mendoza, Daniel (Instituto de Ciencias Agricolas de la Universidad Autonoma de Baja California (ICA-UABC))
Mendez-Trujillo, Vianey (Instituto de Ingenieria de la Universidad Autonoma de Baja California)
Publication Information
Mycobiology / v.46, no.1, 2018 , pp. 47-51 More about this Journal
Abstract
In the present study, the characterization and properties of silver nanoparticles from Yucca shilerifera leaf extract (AgNPs) were investigated using UV-visible spectroscopic techniques, zeta potential, and dynamic light scattering. The UV-visible spectroscopic analysis showed the absorbance peaked at 460 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 729 nm with lower stability (195.1 mV). Additionally, our dates revealed that AgNPs showed broad spectrum antagonism ($p{\leq}.05$) against Fusarium solani (83.05%) and Macrophomina phaseolina (67.05%) when compared to the control after nine days of incubation. Finally, AgNPs from leaf extracts of Y. shilerifera may be used as an agent of biocontrol of microorganism of importance. However, further studies will be needed to fully understand the agronanotechnological potentialities of AgNPs from Yucca schidigera.
Keywords
Biosynthesis; Yucca shilerifera; silver nanoparticles; antifungal activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adesina MF, Lembke A, Costa R, et al. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: sitedependent composition and diversity revealed. Soil Biol Biochem. 2007;39:2818-2828.   DOI
2 Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71:7589-7593.   DOI
3 Lamsal K, Kim S-W, Jung JH, et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology. 2011;39:26-32.   DOI
4 Piacente S, Pizza C, Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev. 2005;4:177-190.   DOI
5 Miyakoshi M, Tamura Y, Masuda H, et al. Antiyeast steroidal saponins from Yucca schidigera (Mohave Yucca), a new anti-food-deteriorating agent. J Nat Prod. 2000;63:332-338.   DOI
6 Ezealisiji KM, Noundou XS, Ukwueze SE. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci. 2017;7:905-911.   DOI
7 Rejinolda NS, Muthunarayanan M, Muthuchelian K, et al. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 2011;84:407-416.   DOI
8 Medda S, Hajra A, Dey U. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci. 2015;5:875-880.   DOI
9 Pastrana A, Basallote-Ureba M, Aguado A, et al. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol Mediterr. 2016;55:109-120.
10 Liu L, Ji M, Chen M, et al. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food Sci Nutr. 2016;6:858-868.
11 Narro-Sanchez J, Davalos-Gonzalez PA, Velasquez-Valle R, et al. Main strawberry diseases in Irapuato, Guanajuato, and Zamora, Michoacan, Mexico. Acta Hortic. 2006;708:167-171.
12 Sharifi K, Mahdavi M. First report of strawberry crown and root rot caused by Macrophomina phaseolina in Iran. Iran J Plant Pathol. 2011;47:161.
13 Pastrana AM, Capote N, De los Santos B, et al. First report of Fusarium solani causing crown and root rot on strawberry crops in southwestern Spain. Plant Dis. 2014;98:161.
14 Mehmood N, Riaz A, Jabeen N, et al. First report of Fusarium solani causing fruit rot of strawberry in Pakistan. Plant Dis. 2017;9:1681.
15 Nam MH, Park MS, Kim HG, et al. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J Microbiol Biotechnol. 2009;19:520-524.   DOI
16 Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ. 2015;521-522:305-314.   DOI
17 Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
18 Ishida K, Cipriano TF, Rocha GM, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2014;109:220-228.
19 Boxi SS, Mukherjee K, Parja S. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology. 2016;8:085103.
20 Mahdizadeh V, Safaie N, Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crops Prot. 2015;4:291-300.
21 Villamizar-Gallardo R, Cruz OJF, Ortiz-Rodriguez OR. Efeito fungicida de nanoparticulas de prata em fungos toxigenicos em cacaueiro. Pesq Agropec Bras. 2016;51:1929-1936.   DOI
22 Shafaghat A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synth React Inorg Met-Org Nano-Met Chem. 2015;45:381-387.   DOI
23 Kim SW, Kim KS, Lamsal K, et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol. 2009;19:760-764.
24 Kotzybik K, Gr€af V, Kugler L, et al. Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS One. 2016;11:e0150855.   DOI
25 Gosens I, Post JA, de la Fonteyne LJ, et al. Impact of agglomeration state of nano and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7:37.   DOI
26 M€uller KH, Motskin M, Philpott AJ, et al. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocytederived macrophages. Biomaterials. 2014;35:1074-1088.   DOI
27 Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Res J Microbiol. 2014;9:34-42.   DOI