DOI QR코드

DOI QR Code

Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment

수환경 특성에 따른 은과 이산화티탄 나노입자의 응집 특성 연구

  • 임명희 (안전성평가연구소, 미래환경연구센터) ;
  • 배수진 (안전성평가연구소, 미래환경연구센터) ;
  • 이용주 (안전성평가연구소, 미래환경연구센터) ;
  • 이성규 (안전성평가연구소, 미래환경연구센터) ;
  • 황유식 (안전성평가연구소, 미래환경연구센터)
  • Received : 2013.08.23
  • Accepted : 2013.10.10
  • Published : 2013.10.15

Abstract

The aggregation behaviors of silver nanoparticles (AgNPs) and titanium dioxide ($TiO_2$) nanoparticles were investigated. Time-resolved dynamic light scattering (DLS) was used to study the initial aggregation of AgNPs and $TiO_2$ over a range of mono (NaCl) and divalent ($CaCl_2$) electrolyte concentrations. The effects of pH, initial concentration of NPs and natural organic matters (NOM) on the aggregation of NPs were also investigated. The aggregation of both nanoparticles showed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type behavior. Divalent electrolyte was more efficient in destabilize the AgNPs and $TiO_2$ than monovalent electrolyte. The effect of pH on the aggregation of AgNPs was not significant. But the aggregation rate of $TiO_2$ was much higher with increasing pH. Higher NPs concentration leads to faster aggregation. Natural organic matter (NOM) was found to substantially hinder the aggregation of both AgNPs and $TiO_2$. This study found that the aggregation behavior of AgNPs and $TiO_2$ are closely associated with environmental factors such as ionic strength, pH, initial concentration of NPs and NOM.

Keywords

References

  1. Ales R. , Robert P., Dana S., Milan D., and Jana R. (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol., 45, pp. 4974-4979. https://doi.org/10.1021/es104216b
  2. Bae S. , Hwang Y. S., Lee Y., and Lee S. (2013) Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles, Environ. Health Toxicol., 28, pp. 1-7.
  3. Benn T . M., and Westerhoff P. (2008) Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol., 42, pp. 4133-4139. https://doi.org/10.1021/es7032718
  4. Bian S ., Mudunkotuwa I. A., Rupasinghe T., and Grassian V. H. (2011) Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid, Langmuir, 27, pp. 6059-6068. https://doi.org/10.1021/la200570n
  5. Chen K . L., and Elimelech M. (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interf. Sci., 307, pp.126-134.
  6. Chen Y ., Huang Y., and Li K. (2012) Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes, J. Environ. Anal. Toxicol., 2, pp. 158.
  7. Derjag uin B. V., and Landau L. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Phys. Chim., 14, pp. 633-662.
  8. Domin gos R. F., Tufenkji N., and Wilkinson K. J. (2009) Aggregation of titanium dioxide nanoparticles: Role of a fulvic Acid, Environ. Sci. Technol., 43, pp.1282-1286. https://doi.org/10.1021/es8023594
  9. Holtho ff H., Egelhaff S., and Borkovec M., (1996) Coagulation rate measurements of colloidal particles by simultaneous static and Dynamic Light Scattering, Langmuir, 12, pp. 5541-5549. https://doi.org/10.1021/la960326e
  10. Huynh K. A., and Chen K. L. (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions, Environ. Sci. Technol., 45, pp. 5564-5571. https://doi.org/10.1021/es200157h
  11. Hwang Y. S., Qu X., and Li Q., Carbon, 2013, The role of photochemical transformations in the aggregation and deposition of carboxylated multiwall carbon nanotubes suspended in water, 55, pp. 81-89. https://doi.org/10.1016/j.carbon.2012.12.012
  12. Itzel G . G., and Christophe J. G. D. (2011) Aggregation and transport of nano-TiO2 in saturated porous media: Effect of pH, surfactants and flow velocity, Water Res., 45, pp.839-851. https://doi.org/10.1016/j.watres.2010.09.013
  13. Jassby D., Budarz J. F., and Wiesner M. (2012) Impact of Aggregate size and structure on the photocatalytic properties of $TiO_2$ and ZnO nanoparticles, Environ. Sci. Technol., 46, pp. 6934-6941. https://doi.org/10.1021/es202009h
  14. Jiang J., Oberdorster G., and Biswas P. (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, J Nanopart. Res., 11, pp. 77-89. https://doi.org/10.1007/s11051-008-9446-4
  15. Kittler S., Greulich C., Diendorf J., Koller M., and Epple M. (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions, Chem. Mater,. 22, pp. 4548-4554. https://doi.org/10.1021/cm100023p
  16. Li Y., Zhang Q., Zhao X, Yu P., Wua L., and Chena D. (2012) Enhanced electrochemical performance of polyaniline/sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure, J. Mater. Chem., 22, pp. 1884-1892 https://doi.org/10.1039/c1jm13359d
  17. Liu J., Aruguete D. M., Murayama M., and Hochella M.F. (2009) Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PBs), Environ. Sci. Technol., 43, pp. 8178-8183. https://doi.org/10.1021/es902121r
  18. Nieme yer C. M. (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew Chem Int Ed., 40, pp.4128-4158. https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  19. Peng Y ., and Chen K. L. (2011) Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent rlectrolytes, Langmuir, 27, pp. 3588-3599. https://doi.org/10.1021/la104682b
  20. Pettibo ne J. M., Cwiertny D. M., Scherer M., and Grassian V. H. (2008) Adsorption of organic acids on TiO2 nanoparticles: Effects of pH, nanoparticle size, and nanopaticle aggregation, Langmuir, 24, pp. 6659-6667. https://doi.org/10.1021/la7039916
  21. Roman ello M. B., and Fidalgo de Cortalezzi M. M. (2013) An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions, Wat. Res., 47, pp. 3887-3898. https://doi.org/10.1016/j.watres.2012.11.061
  22. Shih Y ., Liu W., and Su Y. (2012) Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions, Environ. Toxicol. Chem., 31, pp. 1693-1698. https://doi.org/10.1002/etc.1898
  23. Solovit ch N., Labille J., Rose J., Chaurand P., Borschneck D., Wiesner M. R., and Bottero J. (2010) Concurrent Aggregation and deposition of $TiO_2$ nanoparticles in a sandy porous media, Environ. Sci. Technol., 44, pp. 4897-4902. https://doi.org/10.1021/es1000819
  24. Thio B . J. R., Zhou D., and Keller A. A. (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J. Haz. Mat., 189, pp. 556-563. https://doi.org/10.1016/j.jhazmat.2011.02.072
  25. Yang Z ., Yongsheng C., Paul W., and John C. (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Res., 43, pp. 4249-4257. https://doi.org/10.1016/j.watres.2009.06.005
  26. Zhou D ., and Keller A. A. (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles, Wat. Res., 44, pp. 2948-2956. https://doi.org/10.1016/j.watres.2010.02.025

Cited by

  1. Preservation Conditions of Aqueous Samples Containing silver Nanomaterials vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.218
  2. Trophic transfer of nano-TiO 2 in a paddy microcosm: A comparison of single-dose versus sequential multi-dose exposures vol.212, 2016, https://doi.org/10.1016/j.envpol.2016.01.076
  3. 산화아연 나노물질의 미소생태계 내 거동 및 생물축적 vol.43, pp.3, 2017, https://doi.org/10.5668/jehs.2017.43.3.194
  4. Transport of citrate-coated silver nanoparticles in saturated porous media vol.42, pp.6, 2013, https://doi.org/10.1007/s10653-019-00413-4