• Title/Summary/Keyword: Silver colloidal nanoparticles

Search Result 14, Processing Time 0.027 seconds

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides (단당류와 이당류를 환원제로 합성한 은 나노입자의 Resazurin 산화환원반응 메커니즘)

  • Park, Young Joo;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.299-304
    • /
    • 2020
  • Nanoparticles play an important role as a catalyst in many chemical syntheses. Colloidal nanoparticles were usually synthesized with reducing, capping, and shape directing agents which induce surface poisoning of catalysts. A new green synthesis for silver nanoparticles was developed by utilizing less additives which could be a hazardous waste. A crystallization technique was employed to reduce the amount of reducing and capping agents during synthesis resulting in less surface poisoning of the nanoparticle. The synthesized Ag nanoparticles using monosaccharides and disaccharides as reducing agents could be used as a catalyst for the redox reaction of resazurin and the mechanism of the reaction using Ag nanoparticles was studied.

Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi

  • Min, Ji-Seon;Kim, Kyoung-Su;Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Seung-Bin;Jung, Moo-Young;Lee, Youn-Su
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.376-380
    • /
    • 2009
  • Effects of silver nanoparticles on the phytopathogenic fungal growth were investigated. Fungal phytopathogens, especially for sclerotium-forming species Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor, were selected due to their important roles in survival and disease cycle. Tests for the fungal hyphal growth revealed that silver nanoparticles remarkably inhibit the hyphal growth in a dose-dependent manner. Different antimicrobial efficiency of the silver nanoparticle was observed among the fungi on their hyphal growth in the following order, R. solani > S. sclerotiorum > S. minor. Tests for the sclerotial germination growth revealed that the nanoparticles showed significant inhibition effectiveness. In particular, the sclerotial germination growth of S. sclerotiorum was most effectively inhibited at low concentrations of silver nanoparticles. A microscopic observation revealed that hyphae exposed to silver nanoparticles were severely damaged, resulting in the separation of layers of hyphal wall and collapse of hyphae. This study suggests the possibility to use silver nanoparticles as an alternative to pesticides for scleotium-forming phytopathogenic fungal controls.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

A NOVEL ANTI-MICROBIAL COLLOIDAL SILVER SYSTEM AND ITS APPLICATION FOR COSMETICS

  • Kim, Jin-Woong;Kim, Su-Jin;Han, Sang-Hoon;Chang, Ih-Seop;Kang, Hak-Hee;Lee, Ok-Sub
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.686-697
    • /
    • 2003
  • A new colloidal silver (Ag) system is present in which a fine colloidal Ag is in situ deposited onto functionalized porous poly (ethylene glycol dimethacrylate) (poly (EGDMA)) microspheres. The effectiveness of Ag deposition was investigated considering the surface characteristics of poly (EGDMA) microspheres. The result reported in this study illustrates that the control of surface area and surface functionality (in this study, a hydroxyl group) of poly (EGDMA) microspheres is an important factor that determines practically the degree of deposition of colloidal Ag. The x-ray analysis showed that Ag nanoparticles were dispersed evenly inner and outer surfaces and had a face center cubic (fee) phase. In the preservative efficacy test, the Ag-containing poly (EGDMA) microspheres had a powerful anti-bacterial activity, showing a high potential for a new preservative in cosmetic industry.

  • PDF

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

A new anti-bacterial colloidal system from tailored control of colloidal silver deposition onto functionalized porous

  • Kang, Hak-Hee;Oh, Seong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.1
    • /
    • pp.89-101
    • /
    • 2003
  • A new collolidal silver (Ag) system is present in which a fine colloidal Ag is in situ deposited onto functionalized porous poly(ethylene glycol dimethacrylate) (poly (EGDMA)) microspheres. The effectiveness of Ag deposition was investigated considering the surface characteristics of poly (EGDMA) microspheres, The result reported in this study illustrates that the control of surface area and surface functionality (in this study, a hydroxyl group) of poly (EGDMA) microspheres is an important factor that determines practically the degree of deposition of colloidal Ag. The x-ray analysis showed that Ag nanoparticles were dispersed evenly inner and outer surfaces and has a face center cubic(fcc) phase. In the preservation test, the Ag-containing poly (EGDMA) microspheres had a powerful anti-bacterial performance, showing a high potential for a new preservative.

Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Min, Ji-Seon;Lee, Youn-Su
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

Effects of $NaBH_4$ and laponite on the stability of colloidal Ag nanoparticles (나노 은 콜로이드 입자의 안정성에 대한 $NaBH_4$ 및 Laponite의 영향)

  • Lee, Jung-Baek;Kim, Dong-Hwan;Seo, Jae-Seok;Kim, You-Hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.250-255
    • /
    • 2006
  • The synthesis and characterization of silver colloidal nanoparticles by chemical reduction of silver ions in aqueous $AgNO_3$ using sodium borohydride $(NaBH_4)$ as the reducing agent are described. The experimental conditions for aggregation and paricle size of nanosilver particles in water is investigated in terms of concentration of $NaBH_4$, reaction temperature, dropping rate of $AgNO_3$ and concentration of laponite. Stable nanosilver sol is obtained at three molar ratio of $NaBH_4/AgNO_3$ in conditions of without laponite. The size of nanosilver particles is increased as the reaction temperature is increased. The large size of nanosilver sol is obseved as the dropping rate of $AgNO_3$ is increased due to the aggregation of initial high local concentration of nanosilver particles. Stable nanosilver sol at high temperature $(>\;100^{\circ}C)$ can be prepared when laponite is used as protective colloid.

Attachment of Silver Nanoparticles to the Wool Fiber Using Glycidyltrimethylammonium Chloride(GTAC) (Glycidyltrimethylammonium Chloride(GTAC)를 이용한 양모 섬유 표면의 Silver Nanoparticle 부착)

  • Lee, Seungyoung;Sul, In Hwan;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.70-76
    • /
    • 2016
  • Silver nanoparticles(AgNPs) were attached to wool fibers using glycidyltrimethylammonium chloride(GTAC), which is a type of quaternary ammonium salt. GTAC, which contains an epoxy functional group that, under high temperatures, generates a ring-opening reaction with wool fibers, which contain the amine group. Then, the AgNPs are attached to the surface of the GTAC-treated wool fibers by treatment with a silver colloidal solution. The process involves the following procedures: (1) The wool fibers are immersed in the GTAC solution, followed by pre-drying at $80^{\circ}C$ and curing at $180^{\circ}C$ to induce an alteration in the chemical structure; and (2) The wool fibers treated with GTAC are immersed in the silver colloid at $40^{\circ}C$ for 120 min to chemically induce a strong attachment of the AgNPs to the wool fibers. Scanning electron microscopy was used to analyze the influence of the concentrations of GTAC and the silver colloid, as well as the influence of the applied temperature of the silver colloid on the wool fibers, and the influence of the morphological changes in the wool fiber surfaces. As a result, the enhanced concentrations of GTAC and the silver colloid together with an elevated applied temperature of silver colloid have a tendency to increase in Ag atomic%.