Browse > Article
http://dx.doi.org/10.14478/ace.2020.1031

Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides  

Park, Young Joo (Department of Chemical Engineering, Kumoh National Institute of Technology)
Chang, Ji Woong (Department of Chemical Engineering, Kumoh National Institute of Technology)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 299-304 More about this Journal
Abstract
Nanoparticles play an important role as a catalyst in many chemical syntheses. Colloidal nanoparticles were usually synthesized with reducing, capping, and shape directing agents which induce surface poisoning of catalysts. A new green synthesis for silver nanoparticles was developed by utilizing less additives which could be a hazardous waste. A crystallization technique was employed to reduce the amount of reducing and capping agents during synthesis resulting in less surface poisoning of the nanoparticle. The synthesized Ag nanoparticles using monosaccharides and disaccharides as reducing agents could be used as a catalyst for the redox reaction of resazurin and the mechanism of the reaction using Ag nanoparticles was studied.
Keywords
Silver nanoparticles; Crystallization; Saccharide; Catalysis; Green synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Sumithra, Y. Aparna, P. R. Rao, K. S. Reddy, and P. R. Reddy, Morphological change of silver nanoparticles by the effect of synthesis parameters, Mater. Today, 3, 2278-2283 (2016).   DOI
2 C. He, L. Liu, Z. Fang, J. Li, J. Guo, and J. Wei, Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation, Ultrason. Sonochem., 21, 542-548 (2014).   DOI
3 V. K. Sharma, R. A. Yngard, and Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145, 83-96 (2009).   DOI
4 V. Kabashin and M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, J. Appl. Phys., 94, 7941-7943 (2003).   DOI
5 S. Simoncelli, E. L. Pensa, T. Brick, J. Gargiulo, A. Lauri, J. Cambiasso, Y. Li, S. A. Maierac, and E. Cortes, Monitoring plasmonic hot-carrier chemical reactions at the single particle level, Faraday Discuss., 214, 73-87, (2019).   DOI
6 P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels Rontgenstrahlen, nachrichten von der gesellschaft der wissenschaften Gottingen, Mathematisch-Physikalische Klasse, 2, 98-100, (1918).
7 J. I. Langford and A. J. C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102-103 (1978).   DOI
8 V. Amendola and M. Meneghetti, Size evaluation of gold nanoparticles by UV-vis spectroscopy, J. Phys. Chem., 113, 4277-4285 (2009).
9 S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999).   DOI
10 S. Linden, J. Kuhl, and H. Giessen, Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction, Phys. Rev. Lett., 86, 4688-4691 (2001).   DOI
11 R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, Self-assembled metal colloid mon-olayers: An approach to SERS substrates, Science, 267, 1629-1632 (1995).   DOI
12 C. A. Mirkin, R. L. Letsinger, R. C. Mucic & J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature., 382, 607-609 (1996).   DOI
13 T. Okamoto, I. Yamaguchi, and T. Kobayashi, Local plasmon sensor with gold colloid monolayers deposited upon glass substrates, Opt. Lett., 25, 372-374 (2000).   DOI
14 J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55-75 (1951).   DOI
15 N. Nath and A. Chilkoti, A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface, Anal. Chem., 74, 504-509 (2002).   DOI
16 F. Zaera, A. J. Gellman, and G. A. Somorjai, Surface science studies of catalysis: Classification of reactions, Acc. Chem. Res., 19, 24-31 (1986).   DOI
17 M. Sastry, N. Lala, V. Patil, S. P. Chavan, and A. G. Chittiboyina, Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles, Langmuir, 14, 4138-4142 (1998).   DOI
18 S. Lin, S. Liu, C. Lin, and C. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles, Anal. Chem., 74, 330-335 (2002).   DOI
19 I. K. Sen, K. Maity, and S. S. Islam, Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity, Carbohydr. Polym., 91, 518-528 (2013).   DOI
20 G. C. Bond, Strategy of research on supported metal catalysts. Problems of structure-sensitive reactions in the gas phase bonds, Acc. Chem. Res., 26, 490-495 (1993).   DOI
21 T. Pal, T. K. Sau, and N. R. Jana, Silver hydrosol, organosol, and reverse micelle-stabilized sol - A comparative study, J. Colloid Interface Sci., 202, 30-36 (1998).   DOI
22 J. H. Fendler, Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev., 87, 877-899, (1987).   DOI
23 T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, andn M. A. E. Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science, 272, 1924-1925 (1996).   DOI
24 D. M. Hercules, A. Proctor, and M. Houalla, Quantitative analysis of mixed oxidation states in supported catalysts hercules, Acc. Chem. Res., 27, 387-393 (1994).   DOI
25 S. A. Aromal, K. V. D. Babu, and D. Philip, Characterization and catalytic activity of gold nanoparticles synthesized usingayurvedic arishtams, Spectrochim. Acta A, 96, 1025-1030 (2012).   DOI
26 D. Kim, S. Jeong, and J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection, Nanotechnology, 17, 4019-4024 (2006).   DOI
27 R. Xu, D, Wang J. Zhang, and Y. Li, Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene, Chem. Asian J., 1, 888-893 (2006).   DOI
28 K. Kuroda, T. Ishida, and M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Aunanoparticles deposited on PMMA, J. Mol. Catal. A. Chem., 298, 7-11 (2009).   DOI
29 T. Zhao, R.Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, and R. Due, Size-controlled preparation of silver nanoparticles by a modified polyol method, Colloids Surf., 366, 197-202 (2010).   DOI
30 Y. Xia and Y. Sun, Shape-controlled synthesis of gold and silver nanoparticles, Science, 13, 2176-2179 (2002).   DOI
31 H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone), Langmuir, 12, 909-912 (1996).   DOI
32 C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, and S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5, 244-249 (2005).   DOI
33 G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Y. Ziganshina, and V. V. Yanilkin, Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 50, 69-72 (2015).   DOI
34 Z. Moradi, K. Akhbaria, A. Phuruangrat, and F. Costantino, Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver (I) coordination polymer precursor, J. Mol. Struct., 1133, 172-178 (2017).   DOI