• Title/Summary/Keyword: Silicone hydrogel

Search Result 31, Processing Time 0.024 seconds

Fabrication Technique of Nanoemulsion Using Silicone Oil and Application as Hydrophilic Ophthalmic Lens

  • Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.315-320
    • /
    • 2024
  • In order to maximize the function and increase the compatibility of silicone hydrogel lens, this study compared and analyzed the properties of Amino modified silicone oil using mini and microemulsion technique, respectively. Optical and physical properties were evaluated by spectral transmittance, refractive index, water content, oxygen transmittance and contact angle measurements to evaluate the performance of the manufactured hydrogel lens. The spectral transmittance results revealed the copolymerization method lens showed 31 % of the visible light area, which did not satisfy the basic optical properties. However, the lens using the mini and microemulsion materials showed more than 90 % of the visible light area, satisfying the optical characteristics. In addition, all physical properties were superior to a basic hydrogel lens. The mini and microemulsion techniques effectively improved the stability and function of the ophthalmic hydrogel lens and are considered a promising ways of manufacturing an ophthalmic hydrogel contact lens with increased compatibility and stability.

Comparison of Physical Properties of Domestic Contact Lenses -Focusing on oxygen transmissibility- (국내 생산 콘택트렌즈의 물리적 특성 비교 -산소전달률을 중심으로-)

  • Kim, Ki-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.393-403
    • /
    • 2018
  • Although the use of silicone hydrogel contact lenses which are known to have high oxygen transmissibility is increasing, they are being sold without any product labeling of physical properties such as water content and oxygen transmissibility. To analyze the physical properties such as the water content and oxygen transmissibility of approved silicone hydrogel contact lenses, this study collected and analyzed the approval information published on the KFDA website. Of 68 cases of domestic silicone hydrogel contact lenses analyzed in this study, 61 cases (89.7%) did not meet the international standard for oxygen permeability. This is because lenses that are not different from hydrogel contact lenses were submitted for approval as silicone hydrogel contact lenses because there is no domestic standard for silicone hydrogel contact lenses. In future, besides the information published on the website, analysis of the physical properties of a wide variety of actual silicone hydrogel contact lenses on the market is required.

Preparation and Physical Properties of Silicone Hydrogel Ophthalmic Lens Containing Hydrophilic Monomer

  • Lee, Min-Jae;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.4
    • /
    • pp.261-266
    • /
    • 2016
  • The major physical characteristics of macromolecules used in silicone hydrogel ophthalmic lenses include optical transmittance, oxygen permeability, water content, and refractive index. For the preparation of highly functional silicone hydrogel lens materials, two silicone monomers were used in the presence of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA). The samples containing HEMA and HPMA had oxygen transmissibility (Dk) values in the range of 73.38–50.98 × 10-11 (cm2/s) (mLO2/mL×mmHg) and 71.94–42.80 × 10-11 (cm2/s) (mLO2/mL×mmHg), respectively. Furthermore, the water contents of samples containing HEMA and HPMA were in the range of 32.73–34.67% and 31.94–33.74%, respectively, and the refractive indices were in the range of 1.4348–1.4364 and 1.4385–1.4407, respectively. Thus, silicone monomers containing HEMA and HPMA are expected to be useful for fabricating high-oxygen-permeability silicon hydrogel ophthalmic lenses.

The Change in the Parameters of Silicone Hydrogel Lens and Objective/Subjective Symptoms induced by Repetitive Dryness of Lens (실리콘 하이드로겔 렌즈의 반복적 건조로 인한 렌즈형태 및 자·타각적 증상의 변화)

  • Kim, So Ra;Kang, Byeong Ho;Jung, In Pil;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2012
  • Purpose: In this study, the changes in the shape of silicone hydrogel lenses, dryness of lens and objective/ subjective symptoms that could be induced by repeating dryness of lens and objective/subjective symptoms were investigated. Methods: After drying and rehydrating of silicone hydrogel lenses with different lens material and thickness for 4 times, their overall diameters and base curves were compared. Subjective symptoms, non-invasive tear break-up time (NIBUTs) and blinking rate were evaluated after wearing dehydrated silicone hydrogel lens. Results: Overall diameter and base curve increased in all tested silicone hydrogel lenses by repeating dryness and rehydration. The degree of change in over all diameter and base curve were variable on the material. There were irregular change of lens parameters in thicker lens. When the subjects wore silicone hydrogel lenses after drying and rehydrating, their NIBUTs were decreased and blink rates were increased regardless of lens material or thickness. In addition, repetitive drying of silicone hydrogel lenses affected the lens fitting. Therefore, subjective symptoms such as itching, pain, irritation, foreign body sensation, dryness tended to be increased. Conclusions: The results obtained from the study may suggest to develop durable silicone hydrogel contact lenses against dry environment since the changes in parameters of silicone hydrogel lens and the subjective discomfort were observed after repetitive drying and rehydration.

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.427-432
    • /
    • 2021
  • This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

Effect of Everted(inside out) Silicone Hydrogel Lens on Corneal Topographical Changes (역방향으로 착용한 (inside out or everted) 실리콘 하이드로겔 렌즈가 각막형상 변화에 미치는 영향)

  • Kim, Soo-Hyun;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2012
  • Purpose: The purpose of this study was to examine the corneal topographical changes associated with the wearing of everted silicone hydrogel soft lenses. Methods: The shape and fluorescein pattern of everted silicone hydrogel lenses were investigated. The subject wore the silicone hydrogel everted lenses overnight for 8 hours. Objective refractive error and corneal shape were evaluated at baseline, 1, 2, 3, 5, and 7 days after lens wearing and 1,2,3, and 4 days after discontinuation of lens wear. Results: The Fluorescein pattern of everted silicone hydrogel lenses was similar to the reverse geometry lenses with pressure profile. Objective refractive error(sphere power) and corneal refractive power were decreased and corneal shape had changed during the everted silicone hydrogel lenses wear and recovered during the 4 days of discontinuation. Subject experienced no discomfort associated with the everted silicone hydrogel lenses. Conclusions: It appears that everted silicone hydrogel lenses are capable of inducing significant changes in corneal topography, with overnight wear. Further study must be done to help understand these changes to develop a predictable and effective way of using soft contact lenses for corneal reshaping.

Effect of Hydrogel lens and Silicone-Hydrogel lens on Corneal thickness (하이드로겔 렌즈와 실리콘-하이드로겔 렌즈가 각막 두께에 미치는 영향)

  • Seo, Jung-Ick
    • Journal of Korean Clinical Health Science
    • /
    • v.5 no.4
    • /
    • pp.1021-1025
    • /
    • 2017
  • Purpose: Changes in corneal thickness after wearing hydrogel lens and silicone-hydrogel lens with different oxygen transmission rates wew syudied. Methods: Experiments were performed on 11 subjects(22 eyes). corneal thickness was measured after wearing contact lenses for 8 hours. Corneal thickness was measured using ORB Scan II(ver. 3.14) Results: In the results of the corneal thickness measurement by direction, in the case of the hydrogel-tor lens, the center thickness was $33.63{\mu}m$, the nasal was $34.29{\mu}m$, the temporal was $27.17{\mu}m$, the inferior was $27.17{\mu}m$, the superior was $18.90{\mu}m$, and change rates were 6.28%, 5.71%, 5.40%, 4.75% and 3.09%, respectively. In the results of the corneal thickness measurement by diameter, in the case of the hydrogel-tor lens, the center was $33.63{\mu}m$, the mid-peripheral was $28.19{\mu}m$, the peripheral was $24.18{\mu}m$, and change rates were 6.28%, 4.76%, and 3.79%, respectively. Conclusions: The hydrogel lenses with relatively low oxygen transmission rates resulted in a significant increase in thickness over the entire cornea compared to silicon-hydrogel lenses with high oxygen transmission rates.

Analysis of Physical Properties of Hydrogel Lenses Polymer Containing Styrene and PVP

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.399-407
    • /
    • 2019
  • This research is carried out to analyze the effects of Styrene and PVP on the properties of silicone hydrogel lenses. Styrene group and PVP(Polyvinylpyrrolidone) are used as additives for a basic combination containing silicone monomer, TSMA(trimethylsilyl methacrylate) and DMA(n,n-dimethylacrylamide) added to the mix at ratios of 1~10 %. Silicone hydrogel lens is produced by cast-mold method. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before its optical and physical characteristics are measured. Measurement of the physical characteristics of the produced material shows that the refractive index is 1.3682~1.4321, water content 77.11~45.73 %, visible light transmittance 95.14~88.20 %, and tensile strength 0.0652~0.3113 kgf. The results show a decrease of refractive index as the ratio of additives and water content decreases. The result of the stabilization test of polymerization show an increase of extractables along with increase of the ratio of additives, but the difference is not significant for all samples, so it can be judged that the stabilization of the polymer is maintained. Therefore, the additions of styrene and PVP should be taken into consideration for their effects on the physical properties of silicone hydrogel lens.

Changes in Objective and Subjective Responses in Soft Contact Lens Wearers Refitted to Daily-Wear Silicone Hydrogel Contact Lenses (매일착용 실리콘 하이드로겔렌즈로 바꿔 착용한 소프트 콘택트렌즈 착용자에서 나타난 증상 변화)

  • Lee, Koon-Ja;Mun, Mi-Young;Buyn, Jang-Won;Leem, Hyun-Sung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.43-54
    • /
    • 2007
  • Silicone hydrogel contact lenses developed as a continuous-wear modality are now used as a daily-wear contact lenses. The purpose of this study was to investigate the clinical performance in a group of successful long-term wearers of conventional hydrogel contact lenses when refitted with daily wear $O_2OPTIX$ silicone hydrogel lenses. Sixty-two wearers ($30.7{\pm}19.9$ months of prior lens wear) among sixty-five soft lens wearers refitted with $O_2OPTIX$ silicone hydrogel lenses were participated in this study finally. Subjective symptoms were scored and objective signs were graded using CCLRU scales during the study period. 98% of subjects were successfully refitted with the one base curve of $O_2OPTIX$, and 33.9% of subjects were needed more or less lens powers compared with their habitual lenses. Subjects reported a concurrent reduction in dryness, redness and tiredness compared with their habitual lenses and both subjective and objective evaluations showed that dryness, tiredness, itchiness, bulbar and limbal hyperemia were decreased and significantly decreased particularly for those subjects with greater baseline symptoms (p<0.0001). But corneal staining was increased and was seen in many subjects during the study (p<0.0001). Refitting existing soft contact lens wearers with silicone hydrogel contact lens could result in a decreased in dryness, redness and tiredness, particularly more effective for those subjects with greater baseline of those symptoms. When patients using conventional hydrogel materials switch to a silicone hydrogel material, the potential for increased corneal staining should be considered and over-refraction should be needed to give a best vision.

  • PDF

Preparation and Properties of Silicone Hydrogel Material Containing Silane Group with Cobalt Oxide Nanoparticles through Thermal Polymerization

  • Lee, Min-Jae;Kong, Ki-Oh;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.273-278
    • /
    • 2020
  • This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. VTMS (vinyltrimethoxysilane), TAVS [Triacetoxy(vinyl)silane] and cobalt oxide nanoparticles are used as additives for the basic combination of SilM (silicone monomer), MMA (methyl methacrylate) and MA (methyl acrylate). Also, the materials are copolymerized with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially for TAVS, the addition of cobalt oxide nanoparticles increases the oxygen permeability. These materials are considered to create synergy, so they can be used in functional hydrogel ophthalmic lenses.