Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.7.399

Analysis of Physical Properties of Hydrogel Lenses Polymer Containing Styrene and PVP  

Lee, Min-Jae (Department of Optometry & Vision Science, Daegu Catholic University)
Sung, A-Young (Department of Optometry & Vision Science, Daegu Catholic University)
Publication Information
Korean Journal of Materials Research / v.29, no.7, 2019 , pp. 399-407 More about this Journal
Abstract
This research is carried out to analyze the effects of Styrene and PVP on the properties of silicone hydrogel lenses. Styrene group and PVP(Polyvinylpyrrolidone) are used as additives for a basic combination containing silicone monomer, TSMA(trimethylsilyl methacrylate) and DMA(n,n-dimethylacrylamide) added to the mix at ratios of 1~10 %. Silicone hydrogel lens is produced by cast-mold method. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before its optical and physical characteristics are measured. Measurement of the physical characteristics of the produced material shows that the refractive index is 1.3682~1.4321, water content 77.11~45.73 %, visible light transmittance 95.14~88.20 %, and tensile strength 0.0652~0.3113 kgf. The results show a decrease of refractive index as the ratio of additives and water content decreases. The result of the stabilization test of polymerization show an increase of extractables along with increase of the ratio of additives, but the difference is not significant for all samples, so it can be judged that the stabilization of the polymer is maintained. Therefore, the additions of styrene and PVP should be taken into consideration for their effects on the physical properties of silicone hydrogel lens.
Keywords
styrene group; polyvinylpyrrolidone; polymerization stability; water content; oxygen permeability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. H. Kim and A. Y. Sung, J. Korean Chem. Soc., 54, 105 (2010).   DOI
2 S. A. Cho, T. H. Kim and A. Y. Sung, J. Korean Chem. Soc., 55, 283 (2011).   DOI
3 N. A. Brennan, N. Eforn and B. A. Holden, Ophthalmic Physiol. Opt., 7, 485 (1987).   DOI
4 N. A. Brennan, J. Int. Contact Lens Clin., 10, 357 (1983).
5 G. Y. Mousa, M. G. Callender, J. G. Sivak and D. J. Edan, J. Int. Contact Lens Clin., 10, 31 (1983).
6 T. H. Kim, K. H. Ye and A. Y. Sung, J. Korean Chem. Soc., 53, 755 (2009).   DOI
7 T. H. Kim and A. Y. Sung, J. Korean Chem. Soc., 54, 317 (2010).   DOI
8 F. I. Kanaze, E. Kokkalou, I. Niopas, P. Barmpalexis, E. Georgarakis and E. Bikiaris, Drug Dev. Ind. Pharm., 36, 292 (2007).   DOI
9 I. S. Han, Y. M. lim, H. J. Kwon, J. S. Park and Y. C. No, Polymer, 35, 13 (2011).
10 Y. S. Chun, J. Korean Med. Assoc., 50, 842 (2007).   DOI
11 M. P. Zheng, M. Y. Gu, Y. P. Jin, H. H Wang, P. F. Zu, P. Tao and J. B. He, Mater. Sci. Eng., B87, 197 (2001).
12 T. Thirugnanam, J. Nanomater., 2013, 7 (2013).   DOI
13 Z. Zhang, B. Zhao and L. Hu, J. Solid State Chem., 121, 105 (1996).   DOI
14 D. Wang, V. L. Dimonie, E. D. Sudol and M. S. ELAasser, J. Appl. Polym. Sci., 84, 2721 (2002).   DOI
15 General Standard for Biological Safety of Medical Devices (KFDA Notification No. 2014-115).
16 International Organization for Standardization, 2006, Ophthalmic opt ics contact lenses - Par t 4: Physicochemical properties of contact lens materials, ISO 18369-4.
17 N. Efron, P. B. Morgan, Optom. Vis. Sci., 84, E328 (2007).   DOI
18 C. Maldonado-Codina and N. Efron, Optometry in Practice, 4, 101 (2003).